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a b s t r a c t

In the current preregistered fMRI study, we investigated the relationship between religi-

osity and behavioral and neural mechanisms of conflict processing, as a conceptual

replication of the study by Inzlicht et al., (2009). Participants (N ¼ 193) performed a gender-

Stroop task and afterwards completed standardized measures to assess their religiosity. As

expected, the task induced cognitive conflict at the behavioral level and at a neural level

this was reflected in increased activity in the anterior cingulate cortex (ACC). However,

individual differences in religiosity were not related to performance on the Stroop task as

measured in accuracy and interference effects, nor to neural markers of response conflict

(correct responses vs. errors) or informational conflict (congruent vs. incongruent stimuli).

Overall, we obtained moderate to strong evidence in favor of the null hypotheses that

religiosity is unrelated to cognitive conflict sensitivity. We discuss the implications for the

neuroscience of religion and emphasize the importance of designing studies that more

directly implicate religious concepts and behaviors in an ecologically valid manner.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Everywhere across the world, in all times and cultures we find

people who believe in supernatural beings. Religious beliefs

seem highly successful in offering explanations for various

phenomena, ranging from how the world originated, to why

one had to switch jobs and what happens after one dies. Yet

these beliefs are difficult - if not impossible - to support with

empirical evidence. In fact, believers are often confronted

with widely supported contradicting evidence, for instance
gmail.com (S. Hoogeveen)
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evolutionary explanations of the origins of life or reduction-

istic explanations of their religious experiences. And yet,

despite these challenges, most religious believers keep up

their faith (Pew Research Center, 2012).

Various scholars have suggested that a mechanism of

reduced conflict sensitivity, i.e., detecting the incongruency

between two potentially conflicting sources of information,

may foster the acceptance and maintenance of religious be-

liefs. For example, dual-process accounts of religion (Risen,

2016), the predictive processing model (van Elk & Aleman,

2017), and the cognitive resource depletion model (Schjoedt
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et al., 2013) all assume that religiosity is associated with a

reduced tendency for analytical thinking and error

monitoring.

Where the dual-process model by Risen (2016) assumes a

conflict between intuitive and analytical thinking that is

resolved by acquiescing to the intuition, the predictive pro-

cessing model by van Elk and Aleman (2017) assumes a con-

flict between prior beliefs and sensory input that is resolved by

assigningmoreweight to priors and suppressing the influence

of error signals (and hence mitigating the update of prior be-

liefs). The cognitive resource depletion model applies the

notion of reduced error monitoring specifically to collective

religious rituals. According to the model, the combination of a

charismatic authority, a high arousal context, and a sequence

of causally opaque ritualized behaviors creates optimal cir-

cumstances to facilitate a preordained (religious) interpreta-

tion of events and reduces the likelihood for idiosyncratic

(potentially non-religious) interpretations. These subtle dif-

ferences seem to predominantly reflect ‘a tale of different

literatures’, possibly due to the fact that the frameworks

originate fromdifferent disciplines; dual-processmodelswere

developed in social psychology, predictive processing in

(cognitive) neuroscience, and the cognitive resource depletion

model stems from anthropological research. Nevertheless, all

three accounts converge on the key idea that a process of

reduced conflict detection (or correction) makes individuals

less prone to note information that seemingly contradicts

their religious worldviews and to update their beliefs in the

light of new information. This mechanism could potentially

underlie the relative immunity of religious beliefs to criticism

based on empirical observations (cf. what Van Leeuwen, 2014

calls ‘evidential invulnerability’).

Notably, the implicit assumption of most theoretical

frameworks appears to be that a mechanism of reduced

conflict sensitivity makes people more receptive to being

religious. However, it could also be that being religious affects

people's sensitivity to conflicting information; religious

‘training’ inoculates believers against contradictions and vi-

olations of their worldview. This notion parallels findings

from mindfulness meditation research reporting evidence

that meditation training increases cognitive control as it

teaches practitioners to suppress irrelevant information

(Moore & Malinowski, 2009; Teper & Inzlicht, 2012), with

meditation experts showing less activation in brain areas

implicated in attention and cognitive control (e.g., the anterior

cingulate cortex; Brefczynski-Lewis, Lutz, Schaefer, Levinson,

&Davidson, 2007). As such,mindfulnessmeditationmay train

practitioners to flexibly suppress irrelevant information e

resulting in increased cognitive control. A similar process

may be at play in religious training, in which people also

engage in mental practices to maintain attention (e.g., medi-

tative prayer) and to inhibit irrelevant (e.g., sinful) thoughts.

On the other hand, naturalness of religion accounts posit that

religious concepts (e.g., mind-body dualism, supernatural

agents) are highly intuitive and that it is in fact non-religiosity

that requires cognitive effort to suppress or reject these in-

tuitions (Barrett, 2000; Bloom, 2007; Boyer, 2008; Norenzayan&

Gervais, 2013). This implies that ‘secular training’ (e.g., ana-

lytic thinking and scientific reasoning), rather than religious

training, involves suppressing intuitive information and
enhancing the salience of analytic alternatives e resulting in

increased cognitive control for non-religious compared to

religious individuals.

In line with this latter suggestion, several empirical studies

found that increased religiosity is related to a decreased

cognitive performance, especially when a logically correct

responsemust override a conflicting intuitive response (e.g., in

a base-rate fallacy test; Daws & Hampshire, 2017; Good,

Inzlicht, & Larson, 2015; Pennycook, Cheyne, Barr, Koehler, &

Fugelsang, 2014; Zmigrod, Rentfrow, Zmigrod, & Robbins,

2019). Other behavioral studies correlated individuals’ self-

reported level of religiosity with their performance on low-

level cognitive control tasks such as the Go/No-go task or the

Stroop task. These studies present a mixed bag of evidence;

some report a positive relationship (Inzlicht, McGregor, Hirsh,

and Nash (2009)), an inconsistent pattern (Inzlicht & Tullett,

2010), or no relationship (Kossowska, Szwed, Wronka,

Czarnek, & Wyczesany, 2016) between religiosity and cogni-

tive control (in terms of accuracy and reaction times).

In addition to this behavioral research, a fewneuroscientific

studies have been conducted on the association between reli-

giosity and conflict sensitivity. For instance, an fMRI study

investigated brain responses in devoted religious believerswho

listened to intercessory prayer. When participants believed

that the prayer was pronounced by a charismatic religious

authority, they showed a reduced activation of their frontal

executive network, including the dorsolateral prefrontal cortex

(DLPC) and the ACC, which have been associated with conflict

detection (Schjoedt, Stødkilde-Jørgensen, Geertz, Lund, &

Roepstorff, 2011). Furthermore, Inzlicht et al. (2009) conduct-

ed a series of EEG studies looking at the relation between reli-

giosity and the error-related negativity (ERN; Inzlicht et al.,

2009; Inzlicht & Tullett, 2010). Compared to skeptics, religious

believers demonstrated a smaller ERNamplitude in response to

errors on a color-word Stroop task (Inzlicht et al., 2009). The

authors suggest that these findings reflect the palliative effects

of religiosity on distress responses: religious believers experi-

ence less distress in association with committing an error and

this is reflected in a reduced ERN amplitude. There is, however,

an open-ended debate on the functional significance of the

ERN; while some researchers interpret the ERN primarily as an

affective (i.e., distress) signal, others emphasize that it mainly

reflects conflict-sensitivity (Botvinick, Braver, Barch, Carter, &

Cohen, 2001; Bush, Luu, & Posner, 2000; Carter et al., 1998;

Hajcak, Moser, Yeung, & Simons, 2005; Maier & Steinhauser,

2016; Yeung, Botvinick, & Cohen, 2004).

Relatedly, different views have been proposed on how the

relation between religiosity and ACC conflict activity should

be interpreted; whereas Inzlicht, Tullett, and Good (2011)

suggest that ACC activity in this context reflects error

distress, Schjoedt and Bulbulia (2011) argue that the inter-

pretation of ACC activity as reflecting purely cognitive conflict

sensitivity is more parsimonious. We believe this discussion

partly hinges upon the operationalisation of ‘conflict’. EEG

studies on cognitive conflict have typically studied the ERN as

a proxy for ACC activity. The ERN is an error-related signal and

reflects neural activity associated with incorrect vs. correct

responses, i.e., conflict at the level of the behavioral response

(hereafter: response conflict). In contrast, fMRI studies on

cognitive conflict typically focus on the neural activity

https://doi.org/10.1016/j.cortex.2020.04.011
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associated with incongruent vs. congruent stimulus trials, i.e.,

conflict at the level of information processing (hereafter:

informational conflict). Although there is often a correlation

between response conflict1 and informational conflict, not all

incongruent trials result in errors, nor do all congruent trials

by definition result in correct responses. It is therefore

important to dissociate between these two levels of conflict

and their associated neural activity (cf. Tang, Critchley, Glaser,

Dolan, & Butterworth, 2006; van Veen & Carter, 2005).

It thus remains unclear to what extent religiosity is related

to a reduced sensitivity for response conflict (e.g., responding

with ‘green’ when it should have been ‘red’) or to a reduced

sensitivity for informational conflict (e.g., seeing the word

‘green’ printed in a red font). An effect for response conflict

should be reflected in a relationship between religiosity and

the strength of the errorecorrect Stroop contrast in the fMRI

data, which would be a direct replication of the study by

Inzlicht et al. (2009) and their proposed framework (Inzlicht

et al., 2011; Proulx, Inzlicht, & Harmon-Jones, 2012). An ef-

fect for informational conflict should be reflected in a relation-

ship between religiosity and the strength of the

incongruentecongruent Stroop contrast in the fMRI data.

Schjoedt and Bulbulia (2011), for instance, indeed seem to

interpret Inzlicht et al.’s results as religious believers' inat-
tention to conflictmonitoring. In everyday life, both sources of

conflict detection could play a role in the maintenance of

religious beliefs, e.g., when a believer simply does not detect

the incongruency between different sources of information or

when he/she fails to suppress an intuitive but objectively

incorrect answer.

Taking the distinction between response conflict and

informational conflict into account, here we investigated two

different hypotheses regarding the relation between religi-

osity and cognitive conflict sensitivity: (1) there is a negative

relationship between religiosity and ACC activity induced by

response conflict (i.e., the incorrectecorrect response

contrast), and (2) there is a negative relationship between

religiosity and ACC activity induced by informational conflict

(i.e., the incongruentecongruent Stroop contrast). We note

that both hypotheses are not mutually exclusive, as religiosity

could be related to both mechanisms of conflict detection.2

Although earlier studies provide preliminary evidence for

the religiosityeconflict sensitivity relation, we believe the

present study eincluding a conceptual replication of the

seminal study by Inzlicht et al. (2009)e is important for the

following reasons. First, in order to substantiate the notion

that religious believers are characterized by a general tendency

for reduced conflict sensitivity at the neural level, a significant

correlation or inter-group difference should be established. So
1 Response conflict is here defined as the conflict between the
actual and the correct response, rather than the prepotent and
the correct response.

2 Based on the aforementioned theories addressing believers'
failure to notice incompatibility between different sources of
contradicting information, we would primarily expect a negative
association between religiosity and informational conflict (rather
than response conflict). However, from an empirical perspective,
our study most closely resembles the design by Inzlicht et al.
(2009), who measured and obtained support for a relation be-
tween religiosity and neural markers of response conflict.
far, only three studies found evidence for an inverse relation

between religious beliefs and conflict-induced ACC activity;

Inzlicht et al. (2009) showed that religious zeal and belief in

God were associated with a reduced ERN response and

Kossowska et al. (2016) similarly found that religious funda-

mentalismwas related to a reducedN2 response on the Stroop

task, albeit only in the uncertainty condition where partici-

pants performed the task under undefined time pressure.

Another study failed to find a correlation between neuro-

physiologicalmeasures and religiosity (though the authors did

find an experimental effect of priming God's forgiving nature

on the ERN; Good et al., 2015). Second, with the exception of

Good et al. (2015, n ¼ 108), all experiments linking religiosity to

ACC activity included small samples and were therefore most

likely underpowered (i.e., Inzlicht et al., 2009, n ¼ 28 [Study 1],

n ¼ 22 [Study 2]; Kossowska et al., 2016, n ¼ 37) Third, the

hypothesized relation between religiosity and cognitive con-

flict is primarily based on either behavioral or EEG data. EEG

studies, however, can offer only indirect evidence for the

involvement of specific brain areas (Gazzaniga & Ivry, 2013).

The use of fMRI may complement the existing findings, as

fMRI allows for a higher spatial specificity, and may thus

provide more conclusive evidence regarding the role of the

ACC in the acceptance and maintenance of religious beliefs.

Finally, the current study design allowed us to dissociate be-

tween neural effects related to response conflict (i.e., activity

predicted by response accuracy) and to informational conflict

(i.e., activity predicted by Stroop congruency). This may help

to disentangle the ‘conflict sensitivity’ accounts of religiosity,

and hence affords a more precise theoretical interpretation of

the existing data.

1.1. Hypotheses

We tested eight hypotheses, four of which were based on our

research questions and four that served as ‘outcome neutral

tests’ (Chambers, Feredoes, Muthukumaraswamy, & Etchells,

2014). The four outcome neutral tests were used to validate

that our task did indeed induce cognitive conflict (reflected in

accuracy and Stroop interference effects), that error com-

mission was reflected in ACC activity, and that informational

conflict was reflected in ACC activity. The corresponding

outcome neutral hypotheses for the behavioral measures

were: (H1) participants are more accurate on congruent

compared to incongruent Stroop trials, and (H2) participants

respond faster on congruent compared to incongruent Stroop

trials. Outcome neutral hypotheses for the neural measures

were: (H3) errors on the Stroop task induce more ACC activity

compared to correct responses, on average across subjects,

and (H4) incongruent Stroop trials induce more ACC activity

compared to congruent trials, on average across subjects.

Conditional on establishing the effects related to hypoth-

eses 1e4, we tested four corresponding hypotheses about the

relation between religiosity and conflict sensitivity. For the

behavioral measures, we hypothesized that (H5) Stroop ac-

curacy is negatively related to religiosity, and (H6) Stroop

interference (i.e., the difference in RT for incongruent vs.

congruent trials) is positively related to religiosity, indicating

decreased cognitive performance. We note that, based on the

existing literature one could hypothesize both a positive and a

https://doi.org/10.1016/j.cortex.2020.04.011
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negative relationship between religiosity and conflict detec-

tion; on the one hand, religiosity is associated with reduced

response conflict and hence smaller interference effects (cf.

Inzlicht et al., 2011). On the other hand, religiosity is associ-

ated with an increased tendency for intuitive responding,

which means that more effort is required to overcome these

intuitive response on incongruent Stroop trials, hence larger

interference effects should be expected (cf. Pennycook et al.,

2014). Despite these divergent theoretical predictions, most

studies have not found any association between religiosity

and Stroop interference (Inzlicht et al., 2009, Study 1; Inzlicht

& Tullett, 2010; Kossowska et al., 2016), except for Study 2 by

Inzlicht et al. (2009), in which a positive correlation between

religiosity and Stroop interference was reported. Here, in line

with the latter findingwe hypothesized a positive relationship

between religiosity and Stroop interference.

For the neural measures, we hypothesized that (H7) the

size of the errorecorrect response BOLD signal contrast (i.e.,

difference in BOLD signal between errors and correct re-

sponses) in the ACC is negatively related to religiosity, on

average across subjects (cf. Inzlicht et al., 2009), and (H8) the

size of the incongruentecongruent BOLD signal contrast (i.e.,

difference in BOLD signal between the incongruent and

congruent condition) in the ACC is negatively related to reli-

giosity, on average across subjects. All hypotheses were pre-

registered on the Open Science Framework (see https://osf.io/

nspxb/registrations). Finally, we added exploratory whole-

brain analyses to explore whether religiosity is associated

with conflict-induced neural activity in any other brain areas

besides the ACC.
2. Methods

2.1. Reporting

We report how we determined our sample size, all data ex-

clusions (if any), all inclusion/exclusion criteria, whether in-

clusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

2.2. Overview

The data for this study had already been collected as part of

the Population Imaging (PIoP) project (May 2015 - April 2016),

conducted at the Spinoza Center for Neuroimaging at the

University of Amsterdam (see Appendix A for a description of

the project). An overview of the data collection and analysis

procedure is presented in Fig. 1. All hypotheses were formu-

lated independently without any knowledge of the pre-

processed data, and the analysis pipeline was developed and

preregistered prior to data inspection.3 The preregistration

can be accessed on the OSF (https://osf.io/nspxb/). This folder

also contains the script for the Stroop task, the anonymized

raw and processed data and the R scripts used to preprocess
3 Specifically, LS was involved in data collection and (pre)pro-
cessing the MRI data and has no access to the religiosity data.
MvE and SH formulated the research questions and hypotheses
without any access to the MRI data.
the behavioral data and to conduct the confirmatory analyses

(including all figures). The preprocessing scripts for the fMRI

analysis and the exploratory fMRI analyses can be found at

https://github.com/lukassnoek/ReligiosityFMRI. The (uncor-

rected) brain maps can be found at https://neurovault.org/

collections/6139/.

2.3. Participants

Participants were students who were recruited at the Uni-

versity of Amsterdam and received a financial remunera-

tion. Participants were screened for MRI contraindications

before MRI data acquisition. The intended number of par-

ticipants was 250, but due to technical problems during part

of the acquisition process, only 244 participants yielded

useable MRI data. Of those 244, data from 20 subjects were

excluded due to artifacts in the MRI data due to scanner

instabilities or errors during export and/or reconstruction of

the data. Additionally, 10 participants were excluded

because they did not complete the task of interest (i.e., the

gender-Stroop task). These exclusions were known at the

time of the preregistration.

We entered the analysis phase with data from N ¼ 214

participants. Out of these 214, eight participants were

excluded eas preregisterede because they did not com-

plete the religiosity questionnaire or lacked data on the

covariates of interest (age, gender, and intelligence). We

additionally preregistered to exclude participants whose

accuracy was lower than 65%, because this indicates

performance at chance level. This means that partici-

pants who responded correctly on fewer than 63 out of

the 96 trials were excluded. Furthermore, participants

who did not respond within the response interval on

more than 20% of the Stroop trials were also excluded. As

the minimum response interval of 4500 ms is assumed to

be sufficient for timely responses, missed responses on

more than 20% of the trials were taken to indicate that

participants did not understand or perform the task

adequately. These criteria led to the exclusion of 14

participants, yielding a total sample size of 193. In addi-

tion, for the fMRI analyses, there were 21 participants

who did not make any mistake during the task, pre-

venting us from calculating the ‘incorrectecorrect’

contrast.4 As such, the confirmatory ROI and whole-brain

analyses of this contrast were based on data from 172

participants. All other analyses were done on a total of

N ¼ 193 participants with complete data. The final sample

consisted of 109 ð56:5%Þ women and 84 ð43:5%Þ men. The

average age of the participants was 22.2 years (SD ¼ 1:9;

range ¼ 18� 26).

The study was approved by the local ethics committee at

the Psychology Department of the University of Amsterdam

(Project #2015-EXT-4366) and all participants were treated in

accordance with the Declaration of Helsinki.
4 Of the 21 excluded participants, 19 made no errors and 2
participants made 1 error, but no reliable signal could be
extracted for this error trial.
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Fig. 1 e Overview of data acquisition and analysis. Boxes marked in grey had already been completed prior to commencing

this project. Boxed marked in black represent the analysis steps for the present study, which were determined in the

preregistation.

6 The face Stroop task - instead of the regular word-color
variant - was chosen because it offers optimal opportunities for
dissociating between perceptual processing of target and dis-
tractor dimensions, as processing of the distractor faces can
straightforwardly be linked to activation patterns in the fusiform
face area (FFA; Egner & Hirsch, 2005). In the current study, how-
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2.3.1. Sample size justification
The sample size was determined based on the target of the

overall project minus exclusions due to artifacts in the data,

incomplete data, or preregistered quality criteria. As there

were no existing fMRI studies on the relation between religi-

osity and cognitive conflict processing eonly EEG studiesewe

could not perform a power analysis. However, we note that a

sample of Nz200 is substantially large for an fMRI study

(Szucs & Ioannidis, 2017)5 and exceeds the recommended

minimum sample size of N ¼ 100 for correlational (neuro-

imaging) research (Dubois & Adolphs, 2016; Sch€onbrodt &

Perugini, 2013).

2.4. Procedure

The study ran fromMay 2015 until April 2016. On each testing

day, two participants were tested, which took approximately

4 h and included an extensive behavioral test battery

(approximately 2.5 h) and an MRI session (approximately

1.5 h). Participants received a financial remuneration of 50

euros. The order of behavioral and MRI sessions were coun-

terbalanced across participants.

2.5. Study design

The study involved a mixed design with Stroop congruency as

the within-subjects variable and religiosity as the between-

subjects continuous individual differences variable. The

main part of the study qualified as an observational study; we

investigated the correlation between performance on the

Stroop task and religiosity, and between BOLD-fMRI activity

and religiosity, without manipulating any variables except for

trial congruency (congruent vs. incongruent Stroop trials). The

fMRI task involved a rapid event-related design; a hypothe-

sized BOLD responsewasmodelled following the presentation
5 This meta-analysis reports a median sample size of approxi-
mately 22 for fMRI studies.
of facial stimuli in the congruent or incongruent condition, as

well as following correct and incorrect responses.

2.6. Stroop task

We used a face-gender variant of the Stroop task (adapted

from Egner, Ely, & Grinband, 2010), often referred to as the

‘gender-Stroop’ task, in which pictures of faces from either

gender are paired with the corresponding (i.e., congruent) or

opposite (i.e., incongruent) gender label (see below for details

on the task and example pictures of the stimuli). The face-

gender variant of the Stroop task (Egner & Hirsch, 2005) has

been shown to induce significant behavioral conflict and

neural ACC activation (Egner, Etkin, Gale, & Hirsch, 2008).6

Each trial consisted of a photographic stimulus depicting

either a male or female face, with the gender label ‘MAN’ or

‘WOMAN’ superimposed in red, resulting in gender-congruent

and gender-incongruent stimuli (see Fig. 2). The Stroop con-

dition econgruent vs. incongruente thus formed the within-

subjects manipulated variable.

The stimuli set consisted of a total of 12 female and 12male

faces, with the labels ‘man’, ‘sir’,‘woman’, and ‘lady’, both in

lower- and uppercase added to the pictures (e.g., ‘sir’ and

‘SIR’).7 All combinations appeared exactly one time, resulting

in 96 unique trials (48 congruent and 48 incongruent). Partic-

ipants were always instructed to respond to the gender of the

pictured face, ignoring the distractor word.
ever, we were mainly interested in the cognitive conflict aspect
rather than perceptual processing, and therefore solely focused
on activation in the ACC.

7 The Dutch labels were ‘man’, ‘heer’,‘vrouw’, and ‘dame’,
respectively.

https://doi.org/10.1016/j.cortex.2020.04.011
https://doi.org/10.1016/j.cortex.2020.04.011


Table 1 e Items of the religiosity scale.

1. To what extent do you consider yourself to be religious?

2. To what extent do you believe in God or a supernatural being?

3. To what extent do you believe in life after death?

4. My faith is important to me.

5. My faith affects my thinking and practice in daily life.

6. I pray daily.

7. I visit a church or religious meeting on a weekly basis.

Note.All itemsweremeasured on a 5-point scale ranging from not at

all to very much.

Fig. 2 e Stimuli as used in the face-gender Stroop task.

Distracter words could be incongruent (left) and congruent

(right) with the target face. NB. Translations of the Dutch

labels: ‘MAN’ ¼ ‘MAN’ and ‘VROUW’ ¼ ‘WOMAN’.

c o r t e x 1 2 9 ( 2 0 2 0 ) 2 4 7e2 6 5252
The stimuli were presented for 500 ms with a variable

inter-trial interval ranging between 4000 and 6000 ms, in

steps of 500 ms. Participants could respond from the begin-

ning of the stimulus presentation until the end of the inter-

trial interval (i.e., minimum response interval was 4500,

maximum response interval was 6500), using their left and

right index finger. If no button was pressed during this in-

terval, the trial was recorded as a ‘miss’. Stimuli were pre-

sented using Presentation (Neurobehavioral Systems, www.

neurobs.com), and displayed on a back-projection screen

that was viewed by the subjects via a mirror attached to the

head coil.

2.7. Religiosity measures

Our religiosity measure consisted of 7 items that were based

on religiosity questions included in the World Values Survey

(WVS; World Values Survey, 2010), covering religious iden-

tification, beliefs, values, and behaviors (institutionalized

such as church attendance and private such as prayer). Be-

sides having high face-validity, these measures have been

validated in other studies (Lindeman, Svedholm-Hakkinen,

& Lipsanen, 2015; Norenzayan, Gervais, & Trzesniewski,

2012; Stavrova, 2015) and the items have been used in pre-

vious studies (Maij et al., 2017; van Elk & Snoek, 2020). The

items were evaluated on a 5-point Likert scale ranging from

not at all to very much; see Table 1 for the exact items. Ratings

on the seven religiosity items were tallied to create an

average religiosity score per participant (M ¼ 1:74; SD ¼
0:84). Cronbach's alpha for the 7-item religiosity scale was

.89, indicating good internal consistency. For the analyses,

these average scores were standardized. As anticipated in

the preregistration, the distribution of the religiosity data

was indeed positively-skewed, since our sample consisted of

highly secular students. Although non-normality may

reduce statistical power (Poldrack, Mumford, & Nichols,

2011), it does not pose a problem for our analysis, since

Bayesian linear regression models elike general (ized) linear

models in generale do not assume normality of predictors

(solely of model residuals).
2.8. Additional variables

Gender, age, and intelligence were included as covariates in

the analyses of the main hypotheses. Intelligence was

indexed by the sum score on the 36 item version (set II) of

Raven's Advances Progressive Matrices Test (Raven, 2000;

Raven, Raven, & Court, 1998). The rationale for including

these measures as covariates in our analysis was to control

for the potential confound that any religiosity effect may be

driven by other individual differences that are known to be

associated with religiosity; females are typically more reli-

gious thanmales (Miller&Hoffmann, 1995), older people tend

to be more religious than younger people (Argue, Johnson, &

White, 1999), and people scoring high on intelligence are on

average less religious (Zuckerman, Silberman, & Hall, 2013).

Age and intelligence scores were standardized in the

analyses.

Since the proposed study was part of a larger project, a

number of extra tasks and questionnaires were administered

to the participants (see Appendix A for a description). These

measures were not included in the present study.

2.9. fMRI data acquisition

Subjects were tested using a Philips Achieva 3T MRI scanner

and a 32-channel SENSE headcoil. A survey scan wasmade for

spatial planning of the subsequent scans. After the survey

scan, five functional (T2*-weighted BOLD-fMRI) scans (corre-

sponding to five different tasks, including the gender-Stroop

task; see Appendix A for an overview of the other tasks), one

structural (T1-weighted) scan, and one diffusion-weighted

(DWI) scan were acquired. The DWI scan will not be

described further, as it is not relevant to the current study. The

Stroop task was done during the second scan of the session

(not including the survey scan).

The structural T1-weighted scan was acquired using 3D

fast field echo (TR: 82 ms, TE: 38 ms, flip angle: 8�, FOV: 240 �
18 mm, 220 slices acquired using single-shot ascending slice

order and a voxel size of 1:0 � 1:0 � 1:0 mm). The func-

tional T2*-weighted gradient echo sequences (single shot,

echo planar imaging) were run. The following parameters

were used for the MRI sequence during the gender-Stroop

task: TR¼ 2000ms, TE¼ 27.63ms, flip angle: 76:1�, FOV: 240 �
240 mm, in-plane resolution 64 � 64, 37 slices (with

ascending slice acquisition), slice thickness 3 mm, slice gap

.3 mm, voxel size 3 � 3 � 3 mm), covering the entire brain.

During the Stroop task, 245 volumes were acquired.

http://www.neurobs.com
http://www.neurobs.com
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8 We note that the current design was suboptimal in estimating
the effect of informational conflict (but not response conflict) in
the fMRI data. Due to insufficient ‘jittering’ of the interstimulus
interval, the first-level predictors for congruent and incongruent
trails were strongly negatively corrected (r ¼ � 0:9). While this
does not bias our results (the generalized least squares estimator
we used is still unbiased), it does increase the variance of our first-
level results, which in turn reduces the power of finding a cor-
relation of religiosity with the first-level effect of informational
conflict (operationalized by the ‘incongruent-congruent’
contrast). This issue only applies to the ‘incongruent-congruent’
contrast, not the ‘incorrect-correct’ contrast (as these predictors
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2.10. Preprocessing

Preprocessing was performed using fmriprep version 1.0.15

(Esteban et al., 2019, 2018), a Nipype (Gorgolewski et al., 2011,

2017) based tool. fmriprep was run using the package's Docker

interface. Each T1w (T1-weighted) volume was corrected for

INU (intensity non-uniformity) using N4BiasFieldCorrection

v2.1.0 (Tustison et al., 2010) and skull-stripped using ants-

BrainExtraction.sh v2.1.0 (using the OASIS template). Brain

surfaces were reconstructed using recon-all from FreeSurfer

v6.0.1 (Dale, Fischl, & Sereno, 1999), and the brain mask esti-

mated previously was refined with a custom variation of the

method to reconcile ANTs-derived and FreeSurfer-derived

segmentations of the cortical gray-matter of Mindboggle

(Klein et al., 2017). Spatial normalization to the ICBM 152

Nonlinear Asymmetrical template version 2009c (Fonov,

Evans, McKinstry, Almli, & Collins, 2009) was performed

through nonlinear registration with the antsRegistration tool

of ANTs v2.1.0 (Avants, Epstein, Grossman,& Gee, 2008), using

brain-extracted versions of both T1w volume and template.

Brain tissue segmentation of cerebrospinal fluid (CSF), white-

matter (WM) and gray-matter (GM) was performed on the

brain-extracted T1w using fast (Zhang, Brady, & Smith, 2001;

FSL v5.0.9).

Functional data was motion corrected using mcflirt

(Jenkinson, Bannister, Brady, & Smith, 2002; FSL v5.0.9).

‘Fieldmap-less’ distortion correction was performed by co-

registering the functional image to the same-subject T1w

image with intensity inverted (Huntenburg, 2014; Wang et al.,

2017) constrained with an average fieldmap template (Treiber

et al., 2016), implemented with antsRegistration (ANTs). This

was followed by co-registration to the corresponding T1w

using boundary-based registration (Greve & Fischl, 2009) with

9 degrees of freedom, using bbregister (FreeSurfer v6.0.1).

Motion correcting transformations, field distortion correcting

warp, BOLD-to-T1w transformation and T1w-to-template

(MNI) warp were concatenated and applied in a single step

using antsApplyTransforms (ANTs v2.1.0) using Lanczos

interpolation. Functional data was smoothed with a 5 mm

FWHMGaussian kernel. Many internal operations of fmriprep

use Nilearn (Abraham et al., 2014), principally within the

BOLD-processing workflow. For more details of the pipeline

see http://fmriprep.readthedocs.io.

2.10.1. Quality control
After preprocessing, the MRIQC package (Esteban et al., 2017)

was used to generate visual reports of the data and results of

several intermediate preprocessing steps. These reports were

visually checked for image artifacts, such as ghosting, exces-

sive motion, and reconstruction errors. Participants display-

ing such issues were excluded from further analysis.

2.10.2. fMRI first-level model
The fMRI timeseries were modelled using a first level (i.e.,

subject-specific) GLM, using the implementation provided by

the nistats Python package (https://nistats.github.io;

Abraham et al., 2014; version rel0.0.1b). The GLM included four

predictors modelling elements of the task: incongruent trials,

congruent trials, correct trials, and incorrect trials. If a
participant did not make any mistakes, the ‘incorrect trials’

predictor was left out. The predictors were convolved with a

canonical hemodynamic response function (HRF; Glover,

1999). Onsets for the (in)congruent trial predictors were

defined at the onset of the image and had a fixed duration of

.5 s. Onsets for the (in)correct trial predictors were defined at

the onset of the response. Additionally, six motion regressors

(reflecting the translation and rotation parameters in three

dimensions) were included as covariates. GLMs were fit with

AR1 autocorrelation correction. After fitting the GLMs, the

following contrasts were computed: ‘incorrectecorrect’ and

‘incongruentecongruent’. The parameters ebeta parame-

terse and associated variance terms from these contrasts

were used in subsequent confirmatory ROI analyses and

exploratory whole-brain analyses.8

2.10.3. fMRI group-level model (exploratory)
In addition to the confirmatory analyses, we also performed

an exploratory whole-brain analysis of the effect of religiosity

on fMRI activity associated with response conflict (i.e,. H7)

and informational conflict (i.e., H8). Similar to the confirma-

tory analyses, in addition to religiosity, the variables age,

gender, and intelligence were added as covariates to the

model. In the group-level model and in accordance with the

‘summary statistics approach’, the first-level ‘incor-

rectecorrect’ and ‘incongruentecongruent’ contrast esti-

mates represent the dependent variables, while religiosity,

age, gender, and intelligence represent the independent

variables. For the participants who did not make any error,

we could not compute the ‘incorrect-correct’ contrast and

they were thus excluded from the group-analysis of the

‘incorrect-correct’ contrast.

We used the FSL tool randomise (Winkler, Ridgway,

Webster, Smith, & Nichols, 2014) in combination with

threshold-free cluster enhancement (Smith & Nichols, 2009)

to perform a non-parametric group-analysis of the effect of

religiosity. We ran 10; 000 permutations. Specifically, we

tested for a non-directional (two-tailed) effect of religiosity

variable (controlled for the other covariates). In addition, as

‘outcome neutral tests’, we computed the average of the first-

level contrasts (‘intercept-only’ model) for both the ‘incor-

rect-correct’ and ‘incongruent-congruent’ first-level con-

trasts. We corrected for multiple comparisons using the

distribution of the ‘maximum statistic’ under the null-

hypothesis (i.e., the default in randomise) with a voxel-level

a value of .025 (i.e., a ¼ 0:05 but corrected for two-sided

tests; Chen et al., 2018). We plotted the significant voxels
are much less correlated with each other, r ¼ � 0:2).

http://fmriprep.readthedocs.io
https://doi.org/10.1016/j.cortex.2020.04.011
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Fig. 3 e ROIs used for our confirmatory ROI analyses of the

effect of religiosity on response conflict and informational

conflict.
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showing either a negative or positive effect of religiosity on a

standard MNI152 brain.

2.11. ROI definition

For this study's confirmatory ROI analyses, we used a pre-

registered ROI based on a conjunction of a functional ROI,

derived from fMRI activity preferentially associated with

‘error’ (for H3 and H7) or ‘conflict’ (for H4 and H8) extracted

using Neurosynth (Yarkoni, Poldrack, Nichols, Van Essen, &

Wager, 2011), and an anatomical ROI based on the

anatomical coordinates of the ACC, taken from the

HarvardeOxford cortical atlas (Craddock, James,

Holtzheimer, Hu, & Mayberg, 2012). The reasons for using

a mask based on both a functional and anatomical ROI are

twofold. First, the anatomical ROI of the ACC in the

HarvardeOxford atlas (and many others) consists of several

putatively functionally different subregions (Gasquoine,

2013; Holroyd et al., 2004; Vogt, 2005). A functional ROI

based on the Neurosynth database would resolve this issue

of functional ambiguity within a single (anatomical) ROI;

however, the Neurosynth maps for ‘error’ and ‘conflict’

contain more brain areas than just the ACC (such as the

bilateral insula). Therefore, by using the conjunction be-

tween the functional ROIs based on Neurosynth and the

anatomical ROI of the ACC, we restrict our analyses to a

single anatomical region that is most likely to be functionally

relevant for the psychological constructs of interest, i.e.,

response conflict (“error”) and informational conflict (“con-

flict”). We realize that due to the ambiguity of the term

‘conflict’ (which may refer to informational conflict or

response conflict), the Neurosynth map for ‘conflict’ will

likely also be based on studies involving response conflict.

Although not ideal, we believe that this method is the most

appropriate way to define our ROI.

Specifically, for our functional ROI, we used the Neuro-

synth Python package to conduct separate meta-analyses of

the terms “error*” and “conflict*”, with a frequency

threshold of .0019. We used the ‘association test map’ from

the meta-analysis output (FDR-thresholded for multiple

comparisons at p< 0:01), which reflects voxels which are

preferentially associated with the term ‘error’ and ‘conflict’,

rather than other psychological constructs. For our

anatomical ROI, we used the ‘anterior cingulate cortex’ re-

gion within the HarvardeOxford cortical atlas. We will

define the ACC within this probabilistic atlas as the set of

voxels with a nonzero probability of belonging to the ACC.

Our final ROI is based on the logical conjunction of these

two ROIs (see Fig. 3). For the confirmatory ROI analyses, we

averaged the GLM parameters (bb, ‘beta-values’) and associ-

ated variance parameters (var½bb�) separately for the ‘incor-

rectecorrect’ (H3 and H7) and ‘incongruentecongruent’ (for

H4 and H8) first-level contrasts for each participant. These

ROI-average parameters were subsequently analyzed in a

hierarchical Bayesian regression model (see Statistical

Models section for details).
9 These maps were generated on February 26th, 2019.
2.12. Statistical models

We applied hierarchical Bayesian models for all hypotheses to

accommodate the hierarchical structure of the behavioral and

fMRI data, with trials nested within participants. In the

multilevel structure, we allow the overall performance and the

effect of condition to vary between participants, by including

random intercepts and random slopes, respectively. The

random intercepts and slopes are desirable theoretically; we

are interested in individual differences, hence we should allow

effects to differ between individuals. Statistically, omitting the

random slope has been shown to result in overestimation of

the crosselevel interaction term (i.e., the religiosity� condition

effect) and the lower level main effect (i.e., the effect of con-

dition; Heisig & Schaeffer, 2019). Finally, adopting this multi-

level structure decreases the influence of trial noise through

the process of hierarchical shrinkage (see Discussion; Rouder,

Kumar, & Haaf, 2019). We constructed the hierarchical

Bayesian models using the R package brms (Bürkner, 2017),

which relies on the programming language Stan (Carpenter

et al., 2017). This package incorporates bridgesampling

(Gronau, Singmann, & Wagenmakers, 2017) for hypothesis

testing by means of Bayes factors (BF) and posterior probabil-

ities. The general form of our multilevel regression models is:

yij � N �
b0 þ b0j þ

�
b1 þb1j

�
xij;s

2
�

(1)

where yij is the outcome per trial per participant, and xij the

corresponding value of the predictor. The subscript i is for the

individual trials (i ¼ 1:::ntrials) and the subscript j is for the

participants (j ¼ 1:::N).

2.12.1. Prior specification
We note that the most relevant parameter for making in-

ferences in our specified models is the b1, i.e., the beta-weight

https://doi.org/10.1016/j.cortex.2020.04.011
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for the (standardized) predictors of interest (e.g., Stroop con-

dition, religiosity). As this parameter is used in the critical

tests for our hypotheses, it is important to set appropriate

priors particularly for this parameter. We chose b1 � N ð0;1Þ
for the (standardized) predictors. This prior is listed as a rec-

ommended ‘generic weakly informative prior’ in the Stan

manual (Betancourt, Vehtari, & Gelman, 2015), and has been

used in this context before (e.g., Gelman, Lee, & Guo, 2015).

On the remaining parameters we used weakly-informative

priors, whereby the priors for the regression weights (b0s) are
derived from a normal distribution, and the priors on the scale

parameters from a half-Cauchy distribution (Cþ; Gelman,

2006): b0 � N ð0; 10Þ for the fixed intercept; b0j � N ð0; t20Þ for

the varying part of the intercept per participant; b1j � N ð0; t21Þ
for the varying part of the predictor effect per participant; t �
Cþð0;2Þ for the participant-level variance. Finally, we used the

default LKJ-correlation prior to model the covariancematrices

in hierarchicalmodels (Lewandowski, Kurowicka,& Joe, 2009).

That is, we used Uk � LKJðzÞ, with Uk being the correlation

matrix and z set to 1.

2.12.2. Interpretation of evidence
Hypothesis testing was done by means of Bayes factors that

evaluate the extent to which the data is likely under the

alternative hypothesis (e.g.,H1eH8) versus the corresponding

null hypothesis H0. The Bayes factor (BF) reflects the change

from prior hypothesis or model probabilities to posterior hy-

pothesis or model probabilities and as such quantifies the

evidence that the data provide for H1 versus H0, reflected by:

pðM1jdataÞ
pðM0jdataÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
posterior odds

¼ pðM1Þ
pðM0Þ|fflfflfflffl{zfflfflfflffl}
prior odds

� pðdatajM1Þ
pðdatajM0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Bayes factor

(2)

where M1eM8 and M0 represent the models specified for

H1eH8 and H0, respectively. The Bayes factor BF10 then rep-

resents the ratio of the marginal likelihoods of the observed

data under M1 and M0:

BF10 ¼pðdatajM1Þ
pðdatajM0Þ (3)

As our hypotheses are directed, we computed order-

restricted Bayes factors, i.e., BFþ0 in case of an expected pos-

itive effect. Note that the subscripts on Bayes factor to refer to

the hypotheses being compared, with the first and second

subscript referring to the one-sided hypothesis of interest and

the null hypothesis, respectively. BFþ0 is used in case of a

hypothesized positive effect for the reference group or a

positive relation between variables; BF�0 is used for a negative

effect for the reference group or a negative relation between

variables. As Bayes factors are fundamentally ratios that are

transitive in nature, we can easily compute an order restricted

Bayes factor; by (1) using the BF for the unrestricted model

versus the null model, and (2) comparing the unrestricted

model to an order restriction, we can then (3) use the resulting

BFs to evaluate the order restriction versus the null model

(Morey, 2015).

By default, prior model odds were assumed to be equal for

both models that are compared against each other. As the ev-

idence is quantified on a continuous scale, we also present the
results as such. Nevertheless, we included a verbal summary of

the results by means of the interpretation categories for Bayes

factors proposed by Lee andWagenmakers (2013, p. 105), based

on the original labels specified by Jeffreys (1939). In addition to

Bayes factors, we present the posteriormodel probabilities that

are derived from the generated posterior samples.

For all outcome neutral tests we preregistered that a Bayes

factor of at least 10 etheminimum value for strong evidencee

was required to meet the criteria.

We declare that all models that are described below were

constructed before the data were inspected. Additionally, all

analyses were run as preregistered. Any deviations are

explicitly mentioned in the manuscript.
3. Results

3.1. Outcome neutral tests

3.1.1. Behavioral stroop effect e accuracy
A hierarchical logistic regression model with varying in-

tercepts for the participants and a varying slope for the effect

of Stroop congruency was constructed to model response ac-

curacy. In order to validate the presence of a congruency effect

on accuracy, i.e., a Stroop effect, we compared the model for

H0 containing only the varying intercept, to the model forH�
containing the varying intercept and the negative effect of

congruency.H� thus indicates that the incongruent condition

decreases the probability of responding correctly on the Stroop

task, relative to the congruent condition.

Results revealed a Bayes factor of 8:43� 1011 in favor of

the alternative model (M�) relative to the null model (M0).

That is, BF�0 ¼ 8:43� 1011, indicating that the data are about

1011 times more likely under the model assuming lower

accuracy for incongruent Stroop trials than for congruent

Stroop trials. In order words, the data provide strong evi-

dence for the Stroop effect indexed by accuracy (H1). See

Table 2 for a summary of the results of all four outcome

neutral tests.

3.1.2. Behavioral stroop effect e response times
We used a similar hierarchical regression model with varying

intercepts for the participants and a varying slope for the ef-

fect of Stroop condition to model reaction times. Note that

only correct trials are included in the RT analysis. To account

for the typical positive skew in RT data, we modelled reaction

times as an ex-Gaussian distribution, i.e., a mixture of a

Gaussian and an exponential distribution, which has been

shown to fit empirical RT data well (Balota & Spieler, 1999;

Balota & Yap, 2011; Whelan, 2008). This distribution is incor-

porated in the brms package, and thus only needed to be

specified. Here we expected RTs to be longer for incongruent

vs. congruent trials, hence the Bayes factor BFþ0 was calcu-

lated for ratio between the marginal likelihoods of the

observed data under Hþ versus H0. Again, we expected a

Bayes factor of at least 10.

We obtained a Bayes factor of 3:53� 1067 in favor of Mþ,
that is BFþ0 ¼ 3:53� 1067. In other words, we collected

strong evidence for the Stroop interference effect on reac-

tion times (H2).

https://doi.org/10.1016/j.cortex.2020.04.011
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Table 2 e Results outcome neutral tests.

Hypothesis Bayes factor Posterior Probability Estimated Coefficient

H1: accuracyincongr: <accuracycongr: 1011 1 � :64 ½ � :85; � :46�
H2: RTincongr: > RTcongr: 1067 1 :03 ½:02; :03�
H3: ACCincorr: > ACCcorr: ∞a 1 3:26 ½2:89;3:64�
H4: ACCincongr: > ACCcongr: 157.7 .99 :15 ½:03; :26�
Note.
a Estimated to approach ‘‘infinity’’ as all posterior sampleswere in accordancewith the order-restricted hypothesis. Bayes factors are the order-

restricted Bayes factors for the alternative hypothesis of interest; BF�0 for H1 and BFþ0 for H2eH4. Posterior probabilities are the posterior

model probabilities of the alternative model versus the null model. Coefficients are the medians of the posterior distributions for the

parameter of interest (i.e., Stroop condition or response accuracy) with 95% credible intervals in square brackets.
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3.1.3. Neural processing e response conflict
The hierarchical nature of the fMRI data ebeing derived from

multiple trialse was already taken into account in the calcu-

lation of the ‘incorrectecorrect’ contrast and the ‘incon-

gruentecongruent’ contrast in FSL: we exported the beta-

values for each contrast per participant, as well as the vari-

ance for the contrasts, i.e., bb and var½bb�. The inclusion of the

variance parameter in the Bayesian models is important,

because it allows one to retain the uncertainty associatedwith

the activation level contrast, which is typically lost or ignored

when extracting fMRI data for ROI-analyses.10 In order to test

H3 that the average contrast of ACC activationethe average

‘intercept’ or bb e was substantially different from 0, we used

the function hypothesis which allows for directed hypothesis

test of the specified parameters.11 bb is calculated as (bbincorr: �
bbcorr:), therefore the hypothesis states that bb is larger than

0 (i.e., increased ACC activity for errors compared to correct

responses). Here we calculated the Bayes factor forHþ stating

that bb >0.

We note that analyses that took the ‘incorrectecorrect’

fMRI contrast as the dependent variable (H3 and H7) include

data from 172 participants rather than 193, since some par-

ticipants made no errors on the Stroop task.

The results showed evidence for the alternative hypothesis

to approach ‘‘infinity’’, that is BFþ0 ¼ ∞. Note that this Bayes

factor was estimated by testing the proportion of posterior

samples that satisfy the hypothesis that the intercept > 0.

When all posterior samples are in accordance with the hy-

pothesis, a Bayes factor of ‘‘infinity’’ can be obtained. In this

case that means that the Bayes factor is at least 60; 000 since

themodel included 60;000 samples. In otherwords, the neural

data provide strong evidence that the ACC is sensitive to

response accuracy on the Stroop task.
10 The possibility to include the variance of the observations in
the regression model formula was added for the purpose of meta-
analyses (Vuorre, 2016). However, it also serves the current pur-
pose very well.
11 The term intercept may be somewhat confusing here. Since

the outcome variable is the contrast between the incongruent
and congruent condition (i.e., the difference), we only include the
intercept in this model, and hence look at the effect of the
parameter ‘intercept’.
3.1.4. Neural processing e informational conflict
A similar procedure was used to test H4, this time with the

ACC activity contrast for Stroop congruency instead of

response outcomes. That is, a hierarchical regression model

with a varying intercept for the participants was constructed.

The Bayes factor was calculated for the hypothesis that bb is

larger than 0, sincewe expected bbincongr: to be larger than bbcongr:,

resulting in a positive contrast. Again, a Bayes factor of at least

10 was required to pass the outcome neutral criterion test.

A Bayes factor of 157.7 in favor of the alternative hypoth-

esis was obtained (i.e., BFþ0 ¼ 157:7), indicating that the data

provide strong evidence that the ACC is sensitive to infor-

mational conflict on the Stroop task.

The results of these four analyses indicate that all pre-

specified outcome neutral criteria were met.

3.2. Main preregistered analyses

3.2.1. Behavioral stroop effect and religiosity e accuracy
In order to test H5 whether self-reported religiosity of in-

dividuals is related to their performance on a conflict-

inducing Stroop task, an extended Bayesian hierarchical lo-

gistic regression model was constructed, by adding religiosity

as second-level predictor. Specifically, the model for H0

included varying intercepts and varying slopes for Stroop

condition (as before) per participant, plus the participant-level

variables gender, age, and intelligence (i.e., the covariates).

The model for the alternative hypothesis was identical plus

the inclusion of religiosity as an additional participant-level

predictor. Notably, an interaction term for religiosity � con-

gruency was also included, as the effect of religiosity might be

specific for performance in the conflict condition (i.e., the

incongruent Stroop condition). As we expected a negative

relation between religiosity and performance on the gender-

Stroop task, we restricted the coefficient for religiosity to be

negative in calculating the Bayes factor, i.e., we performed a

one-sided test.12 The ratio of marginal likelihoods for the data

under H� versus H0, i.e., the Bayes factor, were calculated to

determine the evidence for the predictive value of religiosity

in explaining Stroop performance.
12 The coefficient for the interaction term was not order-
restricted.
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Fig. 4 e The marginal effect of religiosity on Stroop accuracy and response time, displayed per Stroop condition. The line

with the blue 95% credible interval band indicates performance on congruent Stroop trials, the line with the red 95% credible

interval band indicates performance on incongruent Stroop trials.
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A Bayes factor of .022 was obtained (i.e., BF�0 ¼ 0:022,

BF0� ¼ 44:8), indicating that the data provided more support

for the null model than for the religiosity model. This result

qualifies as strong evidence that religiosity is not negatively

related to accuracy on the Stroop task. The posterior me-

dians and the 95% credible interval for the coefficients of

religiosity (� 0:08 ½ � 0:25; 0:09�) and of religiosity � Stroop

condition (0:10 ½ � 0:04; 0:24�) indicate that neither religi-

osity, nor the interaction between religiosity and Stroop

condition was related to performance on the Stroop task

(see also Fig. 4a). The results of all main hypotheses are also

summarized in Table 3. The parameters in the regression

models for the four main analyses are displayed in the Ap-

pendix (Figure B.7).

3.2.2. Behavioral stroop effect and religiosity e response
times
We constructed a similar model with RT as the dependent

variable; the model for H0 was a hierarchical ex-Gaussian

regression model for RT with varying intercepts and a vary-

ing slope for Stroop conditioneincluding participant gender,

age, and intelligence as covariates. For Hþ, the model was

identical with the added religiosity predictor and the religi-

osity � congruency interaction term. Again, we hypothesized

that religiosity would be negatively related to Stroop perfor-

mance, hence we expected a positive effect of religiosity on

Stroop response times.

A Bayes factor of 3:93� 10�5 was obtained (i.e., BFþ0 ¼
3:93� 10�5, BF0þ ¼ 25461). Similar to the accuracy analysis,

this indicates that the data do not provide support for the

hypothesis that religiosity is related to longer response times

on the Stroop task. Rather, we obtained strong evidence for

the null hypothesis. The posteriormedians for the coefficients

of religiosity (0:01 ½ � 0:01; 0:02�) and of religiosity � Stroop

condition (0:00 ½ � 0:00; 0:01�) corroborate that there was no

main effect of religiosity on response times, nor was there an
interaction of religiosity� Stroop condition on response times

(see also Fig. 4b).

3.2.3. Neural processing and religiosity e response conflict
A Bayesian linear regression was performed in order to

test H7 whether self-reported religiosity is related to the

ACC sensitivity to incorrect vs. correct responses on the

Stroop task. The beta-values for the BOLD contrast in our

specified ROI served as the dependent variable, i.e., the

extracted bb’s. Again, the variance of the individual beta-

values was included to take the uncertainty of the

contrast estimation into account. Religiosity served as the

predictor of interest and gender, age, and intelligence were

added as covariates. That is, we compared the model

including the contrast-intercept and the covariates (H0) to

the model additionally including the religiosity predictor.

Based on the findings by Inzlicht et al. (2009), we expected

a negative relation between religiosity and ACC activity

induced by response conflict.

The results showed more evidence for the null model

than for the model including religiosity as a predictor:

BF�0 ¼ 0:286 (i.e., BF0� ¼ 3:49). This Bayes factor is inter-

preted as moderate evidence against the hypothesis that

religiosity is associated with reduced ACC sensitivity to

response conflict in the Stroop task (i.e., the ‘incor-

rectecorrect’ contrast). The posterior median and credible

interval for the religiosity predictor were � 0:09 ½ � 0:44;

0:26�. The scatterplot in Fig. 5a illustrates the (absence of

an) association between religiosity and sensitivity of the

ACC to response conflict.
3.2.4. Neural processing and religiosity e informational
conflict
The same model comparison was performed with regard to

the stimulus congruency contrast (i.e., H8). Here, we used the

https://doi.org/10.1016/j.cortex.2020.04.011
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Table 3 e Results main analyses.

Hypothesis Bayes factor Posterior Probability Estimated Coefficient

H5: Religiosity [ e Stroop performance (accuracy) Y .022 ð44:82Þ .012 � :08 ½ � :25; :09�
H6: Religiosity [ e Stroop response times [ 10�5ð25461Þ .000 :01 ½ � :01; :02�
H7: Religiosity [ e ACC activity (response conflict) Y .286 ð3:49Þ .172 � :09 ½ � :44; :26�
H8: Religiosity [ e ACC activity (informational conflict) Y .046 ð21:87Þ .064 :03 ½ � :09; :15�
Note. Bayes factors are the order-restricted Bayes factors for the alternative hypothesis of interest; BF�0 for H5, H7, and H8 and BFþ0 for H6.

Evidence for the null hypothesis is given between brackets. Posterior probabilities are the posterior model probabilities of the alternative model

versus the null model. Coefficients are themedians of the posterior distributions for the parameter of interest (i.e., religiosity) with 95% credible

intervals in square brackets.
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bb’s of the incongruentecongruent BOLD contrast as the

dependent variable. Again, we expected ACC activity to be

negatively related to religiosity, while taking into account the

effects of gender, age, and intelligence.

A Bayes factor of .046 (BF�0 ¼ 0:046, BF0� ¼ 21:9) was ob-

tained, indicating that the data provide strong evidence

against the hypothesis that religiosity is related to reduced

ACC sensitivity to informational conflict in the Stroop task

(i.e., the ‘incongruentecongruent’ contrast). The posterior

median and credible interval for the religiosity predictor were

0:03 ½ � 0:09; 0:15�. The scatterplot in Fig. 5b illustrates the

(absence of an) association between religiosity and sensitivity

of the ACC to informational conflict.

3.3. Exploratory whole-brain analyses

In addition to the confirmatory ROI analyses, we conducted an

exploratory (non-parametric) whole-brain analysis of the ef-

fect of religiosity on both response conflict and informational

conflict. In addition, we ran an ‘intercept-only’ model (esti-

mating the average effect of response and informational

conflict) as an outcome neutral test. All whole-brain t-value
Fig. 5 e The relation between religiosity on the BOLD signal con

(left panel) and on the BOLD signal contrast for incongruent vs.

display raw individual data points and Bayesian estimated linea

with 95% credible interval bands.
maps and associated ‘1-p-value’ maps can be viewed at and

downloaded from Neurovault (https://identifiers.org/

neurovault.collection:6139).

3.3.1. Outcome neutral tests
In Fig. 6, we visualized the whole-brain results (as t-values) of

the ‘intercept-only’ model for both the response conflict data

(i.e., using the ‘incorrectecorrect’ contrast; Fig. 6A) and the

informational conflict data (i.e., using the ‘incon-

gruentecongruent’ contrast; Fig. 6B).

Both whole-brain maps show widespread effects in areas

known to be involved in error monitoring and cognitive

conflict (such as the ACC and insula). Note that the effects

(i.e., t-values) are much larger in the response conflict

analysis, presumably due to the relatively high variance in

the first-level analysis stage due to high predictor

correlation.

3.3.2. Neural processing and religiosity e response conflict
After multiple comparison correction, no voxels were signifi-

cantly associated with religiosity in the response conflict

analysis.
trast for incorrect vs. correct responses on the Stroop task

congruent trials in the Stroop task (right panel). The plots

r effect of religiosity on the conflict-induced BOLD contrasts

https://identifiers.org/neurovault.collection:6139
https://identifiers.org/neurovault.collection:6139
https://doi.org/10.1016/j.cortex.2020.04.011
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Fig. 6 e Brain maps with t-values corresponding to the

outcome neutral (‘intercept-only’) test for both the (A)

response conflict analysis and (B) informational conflict

analysis. The brain maps were masked using P-values

computed using FSL's randomize with threshold-free

cluster enhancement, which we thresholded at p< :05.
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3.3.3. Neural processing and religiosity e informational
conflict
Similar to the response conflict analysis, no voxels were

significantly associated with religiosity after multiple com-

parison correction in the informational conflict analysis.
4. Discussion

In the current preregistered study we investigated whether

religiosity is associated with a reduced sensitivity to cognitive

conflict as measured through behavioral performance on the

Stroop task and neural activation in the anterior cingulate

cortex (ACC). The data from the outcome neutral tests pro-

vided strong evidence that the gender-Stroop task induced

cognitive conflict at the behavioral level (H1 and H2) and that

this was reflected in increased ACC activity. The neuro-

imaging data showed that the ACC was responsive to both

response conflict (incorrect vs. correct responses; H3) and

informational conflict (incongruent vs. congruent trials; H4).

However, individual differences in religiosity were not related

to performance on the Stroop task as measured in accuracy

(H5) and response times (H6). We also did not observe the

hypothesized relation between religiosity and neural activa-

tion related to response conflict (H7) or informational conflict

(H8). Overall, we obtained moderate to strong evidence in

favor of the null hypotheses according to which religiosity is

unrelated to sensitivity to cognitive conflict. Exploratory

whole-brain analyses similarly showed that conflict-induced

neural activity was not associated with religiosity.
These results cast doubt on the theoretical claim that

religiosity is related to a reduced process of conflict sensitivity.

Although this idea is central to various theories about reli-

gious beliefs (e.g., Inzlicht& Tullett, 2010; Schjoedt et al., 2013;

van Elk & Aleman, 2017), our study shows that religious be-

lievers may not be characterized by a general tendency of

attenuated conflict sensitivity. An important motivation for

conducting the current study was to address and overcome

the limitations of previous studies in the field. We did so by

increasing statistical power (i.e., we used a large sample) and

by minimizing degrees of freedom (i.e., we preregistered all

hypotheses, methods, and analyses and a priori specified a

region of interest (ROI) for the fMRI analysis). Moreover, we

curtailed the possibility of (unconscious) biases, as we sepa-

rated the preprocessing of the fMRI data from the statistical

analysis and only combined the fMRI data with the critical

variable of interest (i.e., religiosity) in the final analysis steps.

It is important to note that our sample consisted largely of

highly secular students; the average religiosity score was 1.74

on a 5-point scale and only 43% considered themselves at least

somewhat religious. It could be that the number of religious

believers in the sample was simply insufficient to detect an

effect. Although this is a serious limitation that nuances the

conclusiveness of the current findings, we still believe our

study contributes to the existing literature. The fact that the

Bayesian analyses showed evidence of absence rather than

absence of evidence for the effect, strengthens our belief that

previous claims about the association between religiosity and

cognitive conflict sensitivity should be interpreted with

caution.

Our null findings are perhaps not surprising in light of the

recently voiced concerns about the replicability and reliability

of neuroscientific findings, often related to problems of

insufficiently powered studies (Button et al., 2013; Cremers,

Wager, & Yarkoni, 2017; Szucs & Ioannidis, 2017) and general

challenges in studying individual differences using neuro-

imaging (Dubois & Adolphs, 2016). For instance, Boekel et al.

(2015) attempted to replicate 17 findings relating behavior to

brain structures and found convincing evidence for only one

out of the 17 included effects. Similarly, van Elk and Snoek

(2020) recently failed to find support for the hypothesized

relation between religiosity and greymatter volume in several

brain areas that were identified in the literature as being

associated with religiosity.

The current study employed the face-gender word variant

of the Stroop task rather than the classical color-word Stroop

task that has mostly been used in research on religiosity and

cognitive conflict sensitivity. Both tasks rely on inhibition of

the automatic reading process in order to name the semantic

category, with the key distinction that competition takes

place either between different features of the same item (i.e.,

the meaning and the printed color of the word) or between

two different items (i.e., the meaning of the word and the

‘meaning’ of the picture), though also presented within the

same visual field. Theoretically, we see no reason to assume

that this small difference should be consequential for the

religiosityeconflict sensitivity relation; previous claims are

https://doi.org/10.1016/j.cortex.2020.04.011
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based on a general sensitivity for conflicting information, not

exclusively for conflicting features within the same item (as

in the color-Stroop task) or in superimposed items (as in the

gender-Stroop task). Furthermore, based on the close simi-

larities between the neurocognitive effects associated with

both tasks, the picture-word and the color-word Stroop task

are often assumed to reflect the same underlying process

(e.g., MacLeod, 1991; Starreveld & La Heij, 2017; van Maanen,

van Rijn, & Borst, 2009, but see; Dell’Acqua, Job, Peressotti, &

Pascali, 2007). Finally, the results of our outcome-neutral

tests also provide no indication for substantially different

mechanisms at play relative to the classical Stroop task; we

find interference effects in the same order of magnitude (i.e.,

50.5 ms; Haaf & Rouder, 2019; MacLeod, 1991; Stroop, 1935),

and observe the same implicated brain areas (i.e., the ACC,

the dorsolateral prefrontal cortex; MacLeod & MacDonald,

2000).

The fact that we did not find behavioral evidence for

impaired nor for enhanced Stroop performance among reli-

gious believers might indicate that religiosity is unrelated to

low-level cognitive control processes. At the same time, the

null finding may also reflect the paradox that highly robust

experimental effects esuch as the Stroop effecte are often

difficult to relate to reliable individual differences, irre-

spective of the specific individual difference construct of

interest (Hedge, Powell, & Sumner, 2018; Rouder et al., 2019).

That is, because these effects are very robust and automatic

(‘‘everybody Stroops’’), the between-subjects variability is by

definition relatively small. For correlational designs, this

‘problem’ of small between-subjects variability is further

complicated by the presence of measurement error. Rouder

et al. (2019) demonstrated that the ratio of true variability

(i.e., true differences between individuals) to trial noise (i.e.,

measurement error) is 1 : 7. This unfavorable ratio renders

the mission to uncover individual differences in cognitive

tasks difficult, if not even impossible. Hierarchical models

could mitigate these problems, as these models minimize

the effect of trial noise by pulling the trial-level estimates

toward the individual's mean effect (known as hierarchical

shrinkage). In the current study, we did apply hierarchical

modeling for the response time models, as well as the neural

ACC models (incorporated in the first-level fMRI models in

FSL and by adding the variance parameter of the beta's in the

statistical models). Nevertheless, as acknowledged by

Rouder et al. (2019), characterizing the degree of measure-

ment error does not imply that the real underlying individual

differences can be recovered. This casts doubt on the feasi-

bility to detect true individual variation in cognitive control

tasks, and hence to uncover associations with other mea-

sures. For example, Hedge et al. (2018) reported correlations

of Stroop performance with other measures of cognitive

control (e.g., Flanker task, Go/No-go task) ranging from � :14

to .14, none of which were significant. If we cannot even

establish correlations between two tasks designed to mea-

sure exactly the same underlying phenomenon (i.e., cognitive

control), the quest for reliable correlations between Stroop

performance and more distant constructs such as religiosity

seems all the more futile.
Although we obtained moderate to strong evidence for

all null hypotheses related to religiosity and cognitive con-

flict, the current study does not imply that we should reject

the notion of reduced conflict sensitivity as a defining

characteristic of religious beliefs all together. It could well

be that the relationship between religiosity and conflict

sensitivity is restricted to specific instances or contexts and

hinges strongly on the specific measures and operationali-

zations that are used. For example, in the study by Good

et al. (2015) participants read a sermon about different

qualities of God and then performed a Go/No-Go task with

alcohol-related stimuli for which responses should be

inhibited. As all participants refrained form alcohol con-

sumption in their daily lives based on religious grounds,

errors on the Go/No-Go task were seen as ‘religious’ errors,

exposing participants' ostensible pro-alcohol tendencies.

The results showed that emphasizing the loving and

forgiving nature of God reduced the ERN amplitude in

response to religious errors, while emphasizing divine

punishment did not affect the ERN compared to a control

condition. In other words, it could well be that when par-

ticipants first contemplate on the comforting nature of their

religious beliefs, this may reduce conflict-related ACC ac-

tivity as induced by a task that includes religion-relevant

items and responses. Such a task has much higher ecolog-

ical validity than the Stroop task that we employed in the

current study following the work by Inzlicht et al. (2009).

Similarly, the observed reduction of activity in religious

believers' DLPC and ACC while listening to a charismatic

religious authority (Schjoedt et al., 2011), may specifically

depend on the religious content of the speech (and may

disappear when the same religious authority would talk

about public transport or gardening). It is thus important to

do justice to the subjective nature of religious practices and

experiences, when studying these topics. This resonates

with concerns about the lack of ecological validity in many

neuroscience studies on religion (e.g., Schjoedt and van Elk,

in press): while studies such as the present one offer high

experimental control, the measures do not capture the ‘true

stuff’ that most psychologists and neuroscientists of reli-

gion are interested in, namely lived religious beliefs and

experiences.

We see two broad future directions for the field. First, the

development of new and sophisticated techniques in

neuroscience could allow for interesting new hypotheses

and measures. For instance, the use of multi-voxel pattern

analysis (MVPA) may provide insight into the representa-

tional nature of religious concepts endorsed by believers; a

question could be whether the neural representations of

religious agents such as ‘God’, ‘angels’, or ‘Satan’ are more

similar to real people such as ‘Napoleon’ and ‘Donald

Trump’ or to imaginary agents such as ‘Santa Claus’ and

‘Superman’ (cf. Leshinskaya, Contreras, Caramazza, &

Mitchell, 2017).

Novel methods for assessing brain connectivity also

allow for the investigation of new questions (e.g.,

Huntenburg, Bazin, & Margulies, 2018; Margulies et al., 2016)

One could assess for instance the relationship between

https://doi.org/10.1016/j.cortex.2020.04.011
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religiosity and the integration of information from sensory

cortical areas and the default mode network (DMN), a

network that is implicated in abstract, high-level thinking. A

hypothesis could be that religious believers are more likely

to show a dissociation between the DMN and primary sen-

sory areas. This could be studied in a correlational resting-

state design, or alternatively, one could assess believers’

brain connectivity while engaging in contemplation of their

(religious) beliefs or actions. For instance, intense personal

prayer may be associated with a decoupling of internal self-

referential processing in the DMN and perceptual process-

ing in the sensory cortices specifically during the prayer

experience, similar to what was found for shamanic trance-

experiences (Hove et al., 2015).

Second, and relatedly, we believe there is much promise

in future endeavours that focus on the application of para-

digms and tasks that have higher ecological validity and

more closely implicate religious concepts, as in the exam-

ples given above. Such an approach can hopefully do more

justice to the multifaceted nature of religious beliefs and

practices and can pave the way for a truly better under-

standing of the mechanisms and processes involved in

religiosity.
5. Conclusion

In the current study, we attempted to replicate previous

findings linking religiosity to a reduced sensitivity to con-

flicting information, while mitigating limitations of previous

work. Our results cast doubt on the general claim that reli-

gious believers are characterized by a reduced conflict

sensitivity. That is, in contrast to prior research, our data

provided evidence against an inverse association between

religiosity on the one hand and behavioral performance on

the Stroop task and induced neural activation in the anterior

cingulate cortex (ACC) on the other hand. Although our

findings yield no definitive answer to the question of

whether and how religiosity may be related to (neural

markers of) conflict sensitivity, we believe they highlight that

previous claims should be interpreted with caution and that

the field could benefit frommore ecologically valid measures

to investigate this topic.
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Appendix A. Population Imaging of Psychology
project

The data for this study was collected as part of the Popu-

lation Imaging of Psychology project (PIoP), which was

conducted at the Spinoza Center for Neuroimaging at the

University of Amsterdam. The aim of the PIoP was to offer

researchers the opportunity to collect brain-imaging data

from a large sample of participants (intended N ¼ 250), in

association with their individual difference measure of in-

terest. The data was collected between May 2015 and April

2016.

Standard measurements that were collected for each

participant included a structural T1 MRI scan, task-free

resting state fMRI (6 min), a diffusion tensor imaging (DTI)

scan, and different functional localizer scans that were

collected using EPI sequences, including the Gender Stroop

task, an emotional matching task (Hariri, Bookheimer, &

Mazziotta, 2000), a working memory task (Pessoa,

Gutierrez, Bandettini, & Ungerleider, 2002), and the antici-

pation of positively vs. negatively valenced stimuli

(Oosterwijk, 2017). In addition, demographic variables were

recorded (gender, age, socio-economic status) for each

participant, as well as two personality questionnaires, the

NEO-FFI (Costa & McCrae, 1992) and the SCID (First, Gibbon,

Spitzer, & Benjamin, 1997), and an intelligence test (Raven's
matrices; Raven, 2000). Finally, measures on religiosity and

religious experiences were included (see Methods for de-

tails on the religiosity scale that was used in the present

study).
Appendix A.1. Additional Religiosity Items

1. To what extent do you consider yourself to be spiritual?

2. To what extent do you believe in paranormal phenomena

(e.g., astrology or telepathy)?

3. To what extent are your parents religious?

4. To what extent do your parents frequently visit a church or

religious meeting?

5. Do your parents have a religious lifestyle (e.g., don't go

shopping on Sunday, pray before dinner)?
Appendix B. . Coefficient Plots
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Fig. B.7 e Coefficients of the fixed effects on Stroop accuracy (top left panel), Stroop response times (top right panel),

response conflict ACC activity (bottom left panel), and informational conflict ACC activity (bottom right panel), derived from

the Bayesian regression models. For each predictor, points represent the median estimates, thick lines the 80% credible

interval and thin lines the 95% credible interval. Note that predictors in the accuracy model are on a linear scale and should

be transformed by the inverse logit link to reflect probabilities. In the accuracy and response timemodels, the intercepts are

omitted to enhance visibility of the predictors.

c o r t e x 1 2 9 ( 2 0 2 0 ) 2 4 7e2 6 5262
r e f e r e n c e s

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P.,
Mueller, A., Kossaifi, J., et al. (2014). Machine learning for
neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8,
14.

Argue, A., Johnson, D. R., & White, L. K. (1999). Age and religiosity:
Evidence from a three-wave panel analysis. Journal for the
Scientific Study of Religion, 423e435.

Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008).
Symmetric diffeomorphic image registration with cross-
correlation: Evaluating automated labeling of elderly and
neurodegenerative brain. Medical Image Analysis, 12,
26e41.

Balota, D. A., & Spieler, D. H. (1999). Word frequency, repetition,
and lexicality effects in word recognition tasks: Beyond
measures of central tendency. Journal of Experimental
Psychology: General, 128, 32e55.

Balota, D. A., & Yap, M. J. (2011). Moving beyond the mean in
studies of mental chronometry: The power of response time
distributional analyses. Current Directions in Psychological
Science, 20, 160e166.

Barrett, J. L. (2000). Exploring the natural foundations of religion.
Trends in Cognitive Sciences, 4, 29e34.

Betancourt, M., Vehtari, A., & Gelman, A. (2015). Prior choice
recommendations. https://github.com/stan-dev/stan/wiki/
Prior-Choice-Recommendations.

Bloom, P. (2007). Religion is natural. Developmental Science, 10,
147e151.
Boekel, W., Wagenmakers, E.-J., Belay, L., Verhagen, A. J.,
Brown, S. D., & Forstmann, B. (2015). A purely confirmatory
replication study of structural brain-behavior correlations.
Cortex, 66, 115e133.

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., &
Cohen, J. D. (2001). Evaluating the demand for control:
Anterior cingulate cortex and conflict monitoring. Psychological
Review, 108, 624e652.

Boyer, P. (2008). Religion: Bound to believe? Nature, 455(7216),
1038e1039.

Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S.,
Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of
attentional expertise in long-term meditation practitioners.
Proceedings of the National Academy of Sciences, 104,
11483e11488.

Bürkner, P.-C. (2017). Brms: An R package for Bayesian multilevel
models using Stan. Journal of Statistical Software, 80, 1e28.

Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional
influences in anterior cingulate cortex. Trends in Cognitive
Sciences, 4, 215e222.

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J.,
Robinson, E. S. J., et al. (2013). Power failure: Why small sample
size undermines the reliability of neuroscience. Nature Reviews
Neuroscience, 14, 365e376.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B.,
Betancourt, M., et al. (2017). Stan: A probabilistic programming
language. Journal of Statistical Software, 76.

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., &
Cohen, J. D. (1998). Anterior cingulate cortex, error detection,
and the online monitoring of performance. Science, 280,
747e749.

http://refhub.elsevier.com/S0010-9452(20)30153-2/sref1
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref1
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref1
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref1
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref2
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref2
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref2
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref2
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref3
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref3
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref3
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref3
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref3
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref3
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref4
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref4
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref4
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref4
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref4
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref5
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref5
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref5
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref5
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref5
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref6
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref6
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref6
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref8
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref8
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref8
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref9
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref9
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref9
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref9
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref9
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref10
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref10
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref10
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref10
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref10
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref11
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref11
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref11
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref12
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref12
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref12
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref12
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref12
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref12
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref13
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref13
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref13
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref14
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref14
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref14
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref14
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref15
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref15
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref15
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref15
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref15
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref16
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref16
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref16
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref17
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref17
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref17
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref17
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref17
https://doi.org/10.1016/j.cortex.2020.04.011
https://doi.org/10.1016/j.cortex.2020.04.011


c o r t e x 1 2 9 ( 2 0 2 0 ) 2 4 7e2 6 5 263
Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D., &
Etchells, P. (2014). Instead of ‘‘playing the game’’ it is time to
change the rules: Registered Reports at AIMS Neuroscience
and beyond. AIMS Neuroscience, 1, 4e17.

Chen, G., Cox, R. W., Glen, D. R., Rajendra, J. K., Reynolds, R. C., &
Taylor, P. A. (2018). A tail of two sides: Artificially doubled false
positive rates in neuroimaging due to the sidedness choice with t-
tests (pp. 1037e1043). Human Brain Mapping.

Costa, P. T., & McCrae, R. R. (1992). NEO personality
inventoryerevised (NEO PI-R) and NEO five-factor inventory (NEO-
FFI): Professional manual. Odessa, FL: Psychological Assessment
Resources.

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., &
Mayberg, H. S. (2012). A whole brain fMRI atlas generated via
spatially constrained spectral clustering. Human Brain
Mapping, 33, 1914e1928.

Cremers, H. R., Wager, T. D., & Yarkoni, T. (2017). The relation
between statistical power and inference in fMRI. PloS ONE, 12,
e0184923.

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based
analysis: I. Segmentation and surface reconstruction.
Neuroimage, 9, 179e194.

Daws, R. E., & Hampshire, A. (2017). The negative relationship
between reasoning and religiosity is underpinned by a bias for
intuitive responses specifically when intuition and logic are in
conflict. Frontiers in Psychology, 8, 2191e2191.

Dell'Acqua, R., Job, R., Peressotti, F., & Pascali, A. (2007). The
picture-word interference effect is not a Stroop effect.
Psychonomic Bulletin & Review, 14(4), 717e722.

Dubois, J., & Adolphs, R. (2016). Building a science of individual
differences from fMRI. Trends in Cognitive Sciences, 20, 425e443.

Egner, T., Ely, S., & Grinband, J. (2010). Going, going, gone:
Characterizing the time-course of congruency sequence
effects. Frontiers in Psychology, 1, 154.

Egner, T., Etkin, A., Gale, S., & Hirsch, J. (2008). Dissociable neural
systems resolve conflict from emotional versus nonemotional
distracters. Cerebral Cortex, 18, 1475e1484.

Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms
resolve conflict through cortical amplification of
taskerelevant information. Nature Neuroscience, 8, 1784e1790.

Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A.,
& Gorgolewski, K. J. (2017). Mriqc: Advancing the automatic
prediction of image quality in mri from unseen sites. PLoS
ONE, 12(9), e0184661.

Esteban, O., Blair, R., Markiewicz, C. J., Berleant, S. L., Moodie, C.,
Ma, F., et al. (2018). poldracklab/fmriprep: 1.0.15.

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I.,
Erramuzpe, A., et al. (2019). FMRIPrep: A robust preprocessing
pipeline for functional MRI. Nature Methods, 16, 111.

First, M. B., Gibbon, M., Spitzer, R. L., & Benjamin, L. S. (1997).
User's guide for the structured clinical interview for DSM-IV Axis II
personality disorders: SCID-II. American Psychiatric Pub.

Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C., &
Collins, D. (2009). Unbiased nonlinear average age-
appropriate brain templates from birth to adulthood.
Neuroimage, 47, S102.

Gasquoine, P.G. (2013). Localizationof function inanterior cingulate
cortex: From psychosurgery to functional neuroimaging.
Neuroscience and Biobehavioral Reviews, 37, 340e348.

Gazzaniga, M., & Ivry, R. B. (2013). Cognitive neuroscience: The
biology of the mind: Fourth international student edition. WW
Norton.

Gelman, A. (2006). Prior distributions for variance parameters in
hierarchical models. Bayesian Analysis, 1, 515e534.

Gelman, A., Lee, D., & Guo, J. (2015). Stan: A probabilistic
programming language for bayesian inference and
optimization. Journal of Educational and Behavioral Statistics, 40,
530e543.
Glover, G. H. (1999). Deconvolution of impulse response in
eventerelated BOLD fMRI. Neuroimage, 9(4), 416e429.

Good, M., Inzlicht, M., & Larson, M. J. (2015). God will forgive:
Reflecting on God's love decreases neurophysiological
responses to errors. Social Cognitive and Affective Neuroscience,
10, 357e363.

Gorgolewski, K. J., Burns, C. D., Madison, C., Clark, D.,
Halchenko, Y. O.,Waskom,M. L., et al. (2011). Nipype: Aflexible,
lightweight and extensible neuroimaging data processing
framework in python. Frontiers in Neuroinformatics, 5, 13.

Gorgolewski, K. J., Esteban, O., Ellis, D. G., Notter, M. P., Ziegler, E.,
Johnson, H., et al. (2017). Nipype: A flexible, lightweight and
extensible neuroimaging data processing framework in
Python. 13, 1, 0.

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image
alignment using boundary-based registration. Neuroimage, 48,
63e72.

Gronau, Q. F., Singmann, H., & Wagenmakers, E.-J. (2017).
Bridgesampling: Bridge sampling for marginal likelihoods and Bayes
factors. https://github.com/quentingronau/bridgesampling.

Haaf, J. M., & Rouder, J. N. (2019). Some do and some don't?
Accounting for variability of individual difference structures.
Psychonomic Bulletin & Review, 26(3), 772e789.

Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005). On the
ERN and the significance of errors. Psychophysiology, 42,
151e160.

Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000).
Modulating emotional responses: Effects of a neocortical
network on the limbic system. Neuroreport, 11, 43.

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox:
Why robust cognitive tasks do not produce reliable individual
differences. Behavior Research Methods, 50, 1166e1186.

Heisig, J. P., & Schaeffer, M. (2019). Why you should always include a
randomslope for the lower-level variable involved ina cross-level
interaction. European Sociological Review, 35(2), 258e279.

Holroyd, C. B., Nieuwenhuis, S., Yeung, N., Nystrom, L.,
Mars, R. B., Coles, M. G., et al. (2004). Dorsal anterior cingulate
cortex shows fMRI response to internal and external error
signals. Nature Neuroscience, 7, 497.

Hove, M. J., Stelzer, J., Nierhaus, T., Thiel, S. D., Gundlach, C.,
Margulies, D. S., et al. (2015). Brain network reconfiguration
and perceptual decoupling during an absorptive state of
consciousness. Cerebral Cortex, 26, 3116e3124.

Huntenburg, J. M. (2014). Evaluating nonlinear coregistration of BOLD
EPI and T1w images. PhD thesis. Freie Universit€at Berlin.

Huntenburg, J. M., Bazin, P.-L., & Margulies, D. S. (2018). Large-
scale gradients in human cortical organization. Trends in
Cognitive Sciences, 22, 21e31.

Inzlicht, M., McGregor, I., Hirsh, J. B., & Nash, K. (2009). Neural
markers of religious conviction. Psychological Science, 20,
385e392.

Inzlicht, M., & Tullett, A. M. (2010). Reflecting on God: Religious
primes can reduce neurophysiological response to errors.
Psychological Science, 21, 1184e1190.

Inzlicht, M., Tullett, A. M., & Good, M. (2011). The need to believe:
A neuroscience account of religion as a motivated process.
Religion, Brain & Behavior, 1, 192e212.

Jeffreys, H. (1939). Theory of probability (1 edition). Oxford, UK:
Oxford University Press.

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002).
Improved optimization for the robust and accurate linear
registration and motion correction of brain images.
Neuroimage, 17, 825e841.

Klein, A., Ghosh, S. S., Bao, F. S., Giard, J., H€ame, Y., Stavsky, E.,
et al. (2017). Mindboggling morphometry of human brains.
PLoS Computational Biology, 13, e1005350.

Kossowska, M., Szwed, P., Wronka, E., Czarnek, G., &
Wyczesany, M. (2016). Anxiolytic function of fundamentalist

http://refhub.elsevier.com/S0010-9452(20)30153-2/sref18
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref18
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref18
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref18
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref18
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref19
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref19
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref19
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref19
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref19
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref20
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref20
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref20
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref20
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref20
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref21
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref21
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref21
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref21
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref21
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref22
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref22
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref22
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref23
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref23
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref23
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref23
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref24
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref24
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref24
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref24
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref24
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref25
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref25
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref25
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref25
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref25
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref26
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref26
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref26
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref27
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref27
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref27
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref28
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref28
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref28
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref28
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref29
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref29
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref29
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref29
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref29
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref32
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref32
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref32
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref32
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref33
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref33
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref34
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref34
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref34
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref35
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref35
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref35
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref36
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref36
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref36
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref36
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref37
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref37
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref37
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref37
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref38
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref38
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref38
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref39
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref39
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref39
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref40
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref40
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref40
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref40
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref40
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref41
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref41
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref41
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref41
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref42
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref42
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref42
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref42
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref42
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref43
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref43
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref43
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref43
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref44
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref44
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref44
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref44
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref45
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref45
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref45
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref45
https://github.com/quentingronau/bridgesampling
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref47
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref47
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref47
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref47
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref47
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref48
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref48
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref48
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref48
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref49
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref49
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref49
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref50
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref50
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref50
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref50
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref51
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref51
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref51
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref51
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref52
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref52
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref52
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref52
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref53
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref53
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref53
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref53
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref53
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref54
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref54
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref54
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref55
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref55
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref55
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref55
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref56
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref56
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref56
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref56
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref57
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref57
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref57
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref57
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref58
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref58
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref58
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref58
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref58
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref59
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref59
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref60
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref60
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref60
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref60
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref60
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref61
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref61
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref61
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref61
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref62
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref62
https://doi.org/10.1016/j.cortex.2020.04.011
https://doi.org/10.1016/j.cortex.2020.04.011


c o r t e x 1 2 9 ( 2 0 2 0 ) 2 4 7e2 6 5264
beliefs: Neurocognitive evidence. Personality and Individual
Differences, 101, 390e395.

Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian cognitive
modeling: A practical course. Cambridge (UK): Cambridge
University Press.

Leshinskaya, A., Contreras, J. M., Caramazza, A., & Mitchell, J. P.
(2017). Neural representations of belief concepts: A
representational similarity approach to social semantics.
Cerebral Cortex, 27, 344e357.

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating
random correlation matrices based on vines and extended
onion method. Journal of Multivariate Analysis, 100,
1989e2001.

Lindeman, M., Svedholm-Hakkinen, A. M., & Lipsanen, J. (2015).
Ontological confusions but not mentalizing abilities predict
religious belief, paranormal belief, and belief in supernatural
purpose. Cognition, 134, 63e76.

van Maanen, L., van Rijn, H., & Borst, J. P. (2009). Stroop and
picture-word interference are two sides of the same coin.
Psychonomic Bulletin & Review, 16(6), 987e999.

MacLeod, C. M. (1991). Half a century of research on the
Stroop effect: An integrative review. Psychological Bulletin,
109(2), 163.

MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional
interference in the Stroop effect: Uncovering the cognitive and
neural anatomy of attention. Trends in Cognitive Sciences, 4(10),
383e391.

Maier, M. E., & Steinhauser, M. (2016). Error significance but not
error expectancy predicts error-related negativities for
different error types. Behavioural Brain Research, 297, 259e267.

Maij, D. L. R., van Harreveld, F., Gervais, W., Schrag, Y., Mohr, C., &
van Elk, M. (2017). Mentalizing skills do not differentiate
believers from non-believers, but credibility enhancing
displays do. PLoS ONE, 12, e0182764.

Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M.,
Huntenburg, J. M., Langs, G., et al. (2016). Situating the default-
mode network along a principal gradient of macroscale
cortical organization. Proceedings of the National Academy of
Sciences, 113, 12574e12579.

Miller, A. S., & Hoffmann, J. P. (1995). Risk and religion: An
explanation of gender differences in religiosity. Journal for the
Scientific Study of Religion, 34, 63e75.

Moore, A., & Malinowski, P. (2009). Meditation, mindfulness and
cognitive flexibility. Consciousness and Cognition, 18, 176e186.

Morey, R. D. (2015). Multiple comparisons with BayesFactor, Part 2 e

order restrictions. https://richarddmorey.org/category/order-
restrictions/.

Norenzayan, A., & Gervais, W. M. (2013). The origins of religious
disbelief. Trends in Cognitive Sciences, 17, 20e25.

Norenzayan, A., Gervais, W. M., & Trzesniewski, K. H. (2012).
Mentalizing deficits constrain belief in a personal God. PLoS
ONE, 7, e36880.

Oosterwijk, S. (2017). Choosing the negative: A behavioral
demonstration of morbid curiosity. PLoS ONE, 12, e0178399.

Pennycook, G., Cheyne, J. A., Barr, N., Koehler, D. J., &
Fugelsang, J. A. (2014). Cognitive style and religiosity: The role
of conflict detection. Memory & Cognition, 42, 1e10.

Pessoa, L., Gutierrez, E., Bandettini, P. A., & Ungerleider, L. G.
(2002). Neural correlates of visual working memory: fMRI
amplitude predicts task performance. Neuron, 35, 975e987.

Pew Research Center. (2012). The global religious landscape. https://
www.pewforum.org/2012/12/18/global-religious-landscape-
exec/.

Poldrack, R. A., Mumford, J. A., & Nichols, T. E. (2011). Handbook of
functional MRI data analysis. Cambridge University Press.

Proulx, T., Inzlicht, M., & Harmon-Jones, E. (2012). Understanding
all inconsistency compensation as a palliative response to
violated expectations. Trends in Cognitive Sciences, 16, 285e291.
Raven, J. (2000). The Raven's progressive matrices: Change and
stability over culture and time. Cognitive Psychology, 41,
1e48.

Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven's
progressive matricesand vocabulary scales. In Chapter section
4: The advanced progressive matrices. Oxford, England: Oxford
Psychologists Press.

Risen, J. L. (2016). Believing what we do not believe: Acquiescence
to superstitious beliefs and other powerful intuitions.
Psychological Review, 123, 182e207.

Rouder, J. N., Kumar, A., & Haaf, J. M. (2019). Why most studies of
individual differences with inhibition tasks are bound to fail.
Preprint via PsyArXiv.

Schjoedt, U., & Bulbulia, J. (2011). The need to believe in
conflicting propositions. Religion, Brain & Behavior, 1, 236e239.

Schjoedt, U., Sørensen, J., Nielbo, K. L., Xygalatas, D., Mitkidis, P.,
& Bulbulia, J. (2013). Cognitive resource depletion in religious
interactions. Religion, Brain and Behavior, 3, 39e55.

Schjoedt, U. and van Elk, M. (in press). The neuroscience of
religion. In Barrett, J., editor, Oxford handbook of the cognitive
science of religion. Oxford Univerity Press.

Schjoedt, U., Stødkilde-Jørgensen, H., Geertz, A. W., Lund, T. E., &
Roepstorff, A. (2011). The power of charisma-perceived
charisma inhibits the frontal executive network of believers in
intercessory prayer. Social Cognitive and Affective Neuroscience,
6, 119e127. https://doi.org/10.1093/scan/nsq023.

Sch€onbrodt, F. D., & Perugini, M. (2013). At what sample size do
correlations stabilize? Journal of Research in Personality, 47,
609e612.

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster
enhancement: Addressing problems of smoothing, threshold
dependence and localisation in cluster inference. Neuroimage,
44, 83e98.

Starreveld, P. A., & La Heij, W. (2017). Picture-word interference is
a stroop effect: A theoretical analysis and new empirical
findings. Psychonomic Bulletin & Review, 24(3), 721e733.

Stavrova, O. (2015). Religion, self-rated health, and mortality:
Whether religiosity delays death depends on the cultural
context. Social Psychological and Personality Science, 6,
911e922.

Stroop, J. R. (1935). Studies of interference in serial verbal
reactions. Journal of Experimental Psychology, 18, 643e662.

Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of
published effect sizes and power in the recent cognitive
neuroscience and psychology literature. PLoS Biology, 15,
e2000797.

Tang, J., Critchley, H. D., Glaser, D., Dolan, R. J., & Butterworth, B.
(2006). Imaging informational conflict: A functional magnetic
resonance imaging study of numerical stroop. Journal of
Cognitive Neuroscience, 18, 2049e2062.

Teper, R., & Inzlicht, M. (2012). Meditation, mindfulness and
executive control: The importance of emotional acceptance
and brain-based performance monitoring. Social Cognitive and
Affective Neuroscience, 8, 85e92.

Treiber, J. M., White, N. S., Steed, T. C., Bartsch, H., Holland, D.,
Farid, N., et al. (2016). Characterization and correction of
geometric distortions in 814 diffusion weighted images. PLoS
ONE, 11, e0152472.

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A.,
Yushkevich, P. A., et al. (2010). N4ITK: Improved N3 bias
correction. IEEE Transactions on Medical Imaging, 29, 1310.

van Elk, M., & Aleman, A. (2017). Brain mechanisms in religion
and spirituality: An integrative predictive processing
framework. Neuroscience and Biobehavioral Reviews, 73,
359e378.

van Elk, M., & Snoek, L. (2020). The relationship between
individual differences in grey matter volume and religiosity
and mystical experiences: A pre-registered voxel-based-

http://refhub.elsevier.com/S0010-9452(20)30153-2/sref62
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref62
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref62
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref63
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref63
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref63
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref64
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref64
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref64
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref64
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref64
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref65
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref65
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref65
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref65
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref65
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref66
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref66
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref66
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref66
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref66
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref67
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref67
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref67
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref67
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref67
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref68
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref68
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref68
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref69
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref69
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref69
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref69
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref69
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref70
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref70
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref70
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref70
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref71
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref71
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref71
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref71
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref72
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref72
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref72
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref72
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref72
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref72
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref73
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref73
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref73
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref73
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref74
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref74
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref74
https://richarddmorey.org/category/order-restrictions/
https://richarddmorey.org/category/order-restrictions/
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref76
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref76
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref76
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref77
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref77
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref77
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref78
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref78
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref79
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref79
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref79
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref79
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref79
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref80
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref80
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref80
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref80
https://www.pewforum.org/2012/12/18/global-religious-landscape-exec/
https://www.pewforum.org/2012/12/18/global-religious-landscape-exec/
https://www.pewforum.org/2012/12/18/global-religious-landscape-exec/
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref82
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref82
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref83
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref83
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref83
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref83
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref84
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref84
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref84
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref84
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref85
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref85
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref85
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref85
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref86
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref86
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref86
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref86
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref87
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref87
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref87
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref88
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref88
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref88
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref88
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref89
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref89
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref89
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref89
https://doi.org/10.1093/scan/nsq023
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref92
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref92
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref92
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref92
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref92
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref93
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref93
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref93
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref93
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref93
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref94
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref94
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref94
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref94
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref94
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref95
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref95
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref95
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref95
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref95
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref96
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref96
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref96
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref97
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref97
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref97
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref97
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref98
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref98
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref98
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref98
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref98
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref99
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref99
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref99
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref99
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref99
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref100
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref100
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref100
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref100
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref101
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref101
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref101
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref30
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref30
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref30
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref30
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref30
https://doi.org/10.1016/j.cortex.2020.04.011
https://doi.org/10.1016/j.cortex.2020.04.011


c o r t e x 1 2 9 ( 2 0 2 0 ) 2 4 7e2 6 5 265
morphometry study. European Journal of Neuroscience, 51,
850e865. https://doi.org/10.1111/ejn.14563.

Van Leeuwen, N. (2014). Religious credence is not factual belief.
Cognition, 133, 698e715.

van Veen, V., & Carter, C. S. (2005). Separating semantic conflict
and response conflict in the stroop task: A functional mri
study. Neuroimage, 27, 497e504.

Vogt, B. A. (2005). Pain and emotion interactions in subregions of
the cingulate gyrus. Nature Reviews Neuroscience, 6, 533.

Vuorre, M. (2016). Meta-analysis is a special case of Bayesian multilevel
modeling. https://vuorre.netlify.com/post/2016/09/29/meta-
analysis-is-a-special-case-of-bayesian-multilevel-modeling/.

Wang, S., Peterson, D. J., Gatenby, J. C., Li, W., Grabowski, T. J., &
Madhyastha, T. M. (2017). Evaluation of field map and
nonlinear registration methods for correction of
susceptibility artifacts in diffusion MRI. Frontiers in
Neuroinformatics, 11, 17.

Whelan, R. (2008). Effective analysis of reaction time data. The
Psychological Record, 58, 475e482.

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., &
Nichols, T. E. (2014). Permutation inference for the general
linear model. Neuroimage, 92, 381e397.
World Values Survey. (2010). Wave 6 official aggregate v. 20150418.
Asep/JDS Madrid.

Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., &
Wager, T. D. (2011). Large-scale automated synthesis of
human functional neuroimaging data. Nature Methods, 8,
665.

Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis
of error detection: Conflict monitoring and the error-related
negativity. Psychological Review, 111, 931e959.

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR
images through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE Transactions on
Medical Imaging, 20, 45e57.

Zmigrod, L., Rentfrow, P. J., Zmigrod, S., & Robbins, T. W. (2019).
Cognitive flexibility and religious disbelief. Psychological
Research, 83, 1749e1759. https://doi.org/10.1007/s00426-018-
1034-3.

Zuckerman, M., Silberman, J., & Hall, J. A. (2013). The relation
between intelligence and religiosity: A meta-analysis and
some proposed explanations. Personality and Social Psychology
Review, 17, 325e354.

https://doi.org/10.1111/ejn.14563
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref102
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref102
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref102
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref103
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref103
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref103
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref103
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref104
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref104
https://vuorre.netlify.com/post/2016/09/29/meta-analysis-is-a-special-case-of-bayesian-multilevel-modeling/
https://vuorre.netlify.com/post/2016/09/29/meta-analysis-is-a-special-case-of-bayesian-multilevel-modeling/
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref106
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref106
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref106
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref106
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref106
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref107
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref107
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref107
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref108
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref108
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref108
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref108
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref109
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref109
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref110
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref110
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref110
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref110
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref111
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref111
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref111
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref111
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref112
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref112
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref112
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref112
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref112
https://doi.org/10.1007/s00426-018-1034-3
https://doi.org/10.1007/s00426-018-1034-3
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref114
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref114
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref114
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref114
http://refhub.elsevier.com/S0010-9452(20)30153-2/sref114
https://doi.org/10.1016/j.cortex.2020.04.011
https://doi.org/10.1016/j.cortex.2020.04.011

	Religious belief and cognitive conflict sensitivity: A preregistered fMRI study
	1. Introduction
	1.1. Hypotheses

	2. Methods
	2.1. Reporting
	2.2. Overview
	2.3. Participants
	2.3.1. Sample size justification

	2.4. Procedure
	2.5. Study design
	2.6. Stroop task
	2.7. Religiosity measures
	2.8. Additional variables
	2.9. fMRI data acquisition
	2.10. Preprocessing
	2.10.1. Quality control
	2.10.2. fMRI first-level model
	2.10.3. fMRI group-level model (exploratory)

	2.11. ROI definition
	2.12. Statistical models
	2.12.1. Prior specification
	2.12.2. Interpretation of evidence


	3. Results
	3.1. Outcome neutral tests
	3.1.1. Behavioral stroop effect – accuracy
	3.1.2. Behavioral stroop effect – response times
	3.1.3. Neural processing – response conflict
	3.1.4. Neural processing – informational conflict

	3.2. Main preregistered analyses
	3.2.1. Behavioral stroop effect and religiosity – accuracy
	3.2.2. Behavioral stroop effect and religiosity – response times
	3.2.3. Neural processing and religiosity – response conflict
	3.2.4. Neural processing and religiosity – informational conflict

	3.3. Exploratory whole-brain analyses
	3.3.1. Outcome neutral tests
	3.3.2. Neural processing and religiosity – response conflict
	3.3.3. Neural processing and religiosity – informational conflict


	4. Discussion
	5. Conclusion
	Funding
	CRediT authorship contribution statement
	Open practices
	Appendix A. Population Imaging of Psychology project
	Appendix A.1. Additional Religiosity Items

	Appendix B. . Coefficient Plots
	References


