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Abstract
Team science projects have become the gold standard for assessing
the replicability and variability of key findings in psychological sci-
ence. However, we believe the typical meta-analytic approach in these
projects fails to match the wealth of collected data. Instead, we advo-
cate the use of Bayesian hierarchical modeling for team science projects,
potentially extended in a multiverse analysis. We illustrate this full-
scale analysis by applying it to the recently published Many Labs 4
project. This project aimed to replicate the mortality salience effect –
that being reminded of one’s own death strengthens the own cultural
identity. In a multiverse analysis we assess the robustness of the results
with varying data inclusion criteria and prior settings. Bayesian model
comparison results largely converge to a common conclusion: the data
provide evidence against a mortality salience effect across the majority
of our analyses. We issue general recommendations to facilitate full-
scale analyses in team science projects.

Keywords: Bayes factor, Bayesian hierarchical modeling, Replication,
Team science

Introduction

A salient recent reform in psychological science is the trend towards ‘team sci-
ence’. In crowd-sourced collaborative projects, many different sites across the globe
jointly collect data to answer questions about replicability and variability of effects
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(Chartier et al., 2018; Forscher et al., in press; Uhlmann et al., 2019). These team sci-
ence efforts have become the gold standard for assessing the robustness of key findings
in the psychological literature. Noteworthy examples of such large-scale endeavours
are The Reproducibility Project: Psychology (Open Science Collaboration, 2015),
Many Labs (Ebersole et al., 2016; Klein et al., 2022, 2014, 2018), ManyBabies (Frank
et al., 2017; The ManyBabies Consortium, 2020), the Pipeline Project (Schweinsberg
et al., 2016), and the Psychological Science Accelerator (Chen et al., 2018; Jones et
al., 2021; Moshontz et al., 2018). These crowd-sourcing data collection efforts allow
researchers to obtain larger samples and hence increase statistical power as well as to
reach traditionally less-studied populations (i.e., non-Western participants; Henrich,
Heine, & Norenzayan, 2010).

Given the wealth of data that is obtained in these collaborative projects, we
believe it is important to fully make use of the available information in the statistical
analysis. Unfortunately, the analytic strategies that are often taken in team science
projects may not do justice to the collected data. While some projects, such as Many-
Babies have conducted sophisticated hierarchical analyses, most of the Many Labs
projects and other large-scale team science projects have used standard meta-analytic
approaches. In these standard analyses, the data are summarized per lab or site and
a frequentist meta-analysis is conducted, in which either a fixed or random effects
structure is applied. We will refer to this type of analysis with compressed data as a
‘minimal analysis’. We believe a minimal analysis constitutes a missed opportunity, as
it both limits analytic possibilities and compromises the informativeness of the data.
For instance, in a meta-analysis, one cannot investigate participant-level predictors
and the data are reduced to mean effect size and its standard error per lab, thereby
losing information about the primary data. A huge advantage of large-scale team
science projects is that participant-level and sometimes even trial-level data within a
person are available, so we believe one should use their full potential.

In the following, we will argue for what we will call a full-scale analysis instead
of the minimal analysis in team science efforts. Specifically, we will demonstrate
the usefulness of Bayesian hierarchical modeling (also known as multilevel modeling;
see also Rouder, Haaf, Davis-Stober, & Hilgard, 2019). We first highlight general
advantages of the Bayesian modeling approach and then illustrate our method by
applying it to the recently published Many Labs 4 project (Klein et al., 2022).

Many Labs 4 is a large scale attempt to replicate the mortality salience effect
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from Terror Management Theory (Greenberg, Pyszczynski, Solomon, Simon, & Breus,
1994): reminders of one’s own death strengthen one’s cultural identity. In the classical
demonstration of this effect, participants from the United States who were prompted
to imagine their own death expressed more pro-American (i.e., in line with their
worldview) beliefs than participants who were prompted to imagine watching TV. In
addition to the question of replicability, Klein et al. (2022) wanted to assess the impact
of involving the original authors in the study design. Therefore, some studies followed
a standard protocol that was agreed upon by experts in the field (author-advised)
while other studies were designed by the labs conducting them (in-house). After data
collection from over 2,000 participants in 21 labs with and without involvement of
the original authors the project could not replicate the original finding of Study 1 of
Greenberg et al. (1994), and reported an overall meta-analytic effect size of g = 0.07,

95% CI = [−0.03, 0.17]. The authors concluded that they found “little evidence
that priming mortality salience increased worldview defense compared to a control
condition” and that “[t]he present evidence does [...] provide an important challenge
for TMT to address” (Klein et al., 2022, p.10).

Bayesian Hierarchical Modeling

So what should such a full-scale analysis look like for Many Labs 4 or other
team science projects? In the following we will describe four features that we believe
a full-scale analysis for team science projects should include.

First, we believe a Bayesian analysis is preferred over a frequentist analysis,
as the former allows one to obtain evidence for the null-hypothesis and to quantify
(posterior) uncertainty (Wagenmakers et al., 2018). Especially in replication studies,
the chances of obtaining null results are considerable. We opt for a Bayesian analysis
using Bayes factor model comparison (Jeffreys, 1939; Kass & Raftery, 1995). In short,
Bayes factors quantify the relative evidence for a model (e.g., the alternative) over
another model (e.g., the null). For an introduction to Bayes factor model comparison
we refer the reader to Wagenmakers et al. (2018) and Rouder, Haaf, and Aust (2018).

The main advantage of Bayesian statistics in light of large-scale replication
efforts is that it allows a distinction to be made between evidence for the absence of
the effect of interest and the absence of evidence for or against the effect (Keysers,
Gazzola, & Wagenmakers, 2020). In other words, failure to successfully replicate a
key effect could mean that the data are undiagnostic for determining whether or not
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the effect is present, or it could mean that the data provide substantial evidence
against the presence of the effect. Obviously, this difference is highly consequential
for interpreting the results of a study.

The second feature of a full-scale analysis relates to the hierarchical nature
of data in team science projects. That is, instead of a meta-analysis, we advocate
the use of a hierarchical model including all primary data, with participants nested
within labs (Hoogeveen, Haaf, et al., 2022; Rouder et al., 2019). In a hierarchical
model, the lowest-level data are nested within their higher-level groups, such as tri-
als nested within participants, or participants nested within labs or countries. This
structure makes it possible to assess general or overall effects as well as individual or
lab-specific deviations from those overall effects. For a tutorial on Bayesian hierarchi-
cal modeling, we refer the reader to Veenman, Stefan, and Haaf (2022). Additional
demonstrations of the Bayesian hierarchical modeling approach for team science ef-
forts can be found in Hoogeveen, Haaf, et al. (2022), Gervais et al. (2017), Tierney
et al. (2021) and Tierney et al. (in preparation). The hierarchical approach for team
science efforts brings several benefits. First, by capitalizing on the full resolution of
the data, no information is lost in the interim aggregation process. For instance, in
a meta-analysis a relatively large standard error for a given lab or site might either
reflect a heterogeneous sample or simply a small sample. In a hierarchical model, the
source of the (im)precision of the estimate is retained and thus can be interpreted.
Second and relatedly, hierarchical shrinkage reduces the influence of outlying labs
with small samples, hence automatically weighing the contribution of the different
labs towards the global estimate (Efron & Morris, 1977). Third, while study-level
predictors may be included in a meta-analysis, the hierarchical model additionally
allows for the inclusion of participant-level predictors and/or the assessment of inter-
action effects. Finally, in the hierarchical approach we can easily evaluate whether
effects meaningfully differ per site/lab (e.g., in terms of WEIRDness or cross-cultural
robustness; e.g., Hoogeveen, Haaf, et al., 2022).

The third feature of a full-scale analysis concerns the inclusion of theoretical con-
straint in the statistical analysis (Haaf, Klaassen, & Rouder, 2018; Haaf & Rouder,
2017; Rouder et al., 2019). Psychological theories typically constrain behavioral data
in the sense that theories dictate ordinal predictions; observed effects are described in
the form of “manipulation X causes higher scores on Y or slower responses” or “higher
scores on X are associated with lower scores on Y or faster responses”. Given the ordi-
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nal nature of the hypotheses, we believe statistical tests should reflect the theoretical
predictions about the direction of effects. For instance, we expect participants who
imagined their own death to identify more with American culture than participants
who imagined watching TV, rather than just a difference between conditions.

The hierarchical nature of the data in team science projects allows for more in-
formative testing of ordinal predictions beyond directional constraint at the aggregate
level. Specifically, rather than testing whether on average, participants who imagined
their own death identify more with American culture than participants who imagined
watching TV, we can also test whether this pattern holds across every lab that is
included in the analysis. This latter constitutes a much riskier prediction, as we now
need the effect to be present in every single lab (e.g., 21 times, instead of once). This
risky prediction is potentially rewarded in terms of evidence when the data reflect
the predicted pattern, boosting the effect’s credibility. Rouder et al. (2019) refer to
this “does every study?” question as a test of qualitative differences, as it provides
information on whether the effect of interest is qualitatively equal across studies (i.e.,
in the same direction).

Bayesian modeling methods are particularly well suited to test ordinal con-
straints at different levels, such as “is the overall mortality salience effect positive”
or “does every lab show a positive mortality salience effect?”. We would therefore
advocate to include both versions of these theoretically-motivated ordinal constraints
in the statistical analysis for team science projects (see also Rouder et al., 2019 and
Haaf & Rouder, 2017 for application of these ordinal constraints in meta-analysis and
individual cognitive performance, respectively).

Finally, the fourth feature of a full-scale analysis relates to assessing the ro-
bustness of the findings. That is, beyond using Bayesian hierarchical modeling, we
believe team science projects can at least sometimes benefit from conducting a mul-
tiverse analysis (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016). In a multiverse
analysis, the researcher can evaluate different potential constellations of the data (e.g.,
exclusions, theoretically relevant subgroups), priors and predictors without commit-
ting to one –perhaps arbitrarily– chosen analysis path. As will be demonstrated by
the Many Labs 4 example below, there are often multiple defensible analytic choices
that can be considered. A complete assessment of the robustness of a given effect
might thus require many labs as well as many analyses (Wagenmakers, Sarafoglou, &
Aczel, 2022). The multiverse approach not only presents a broader and more complete
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picture of the results, it also allows one to explore the consequences of analytic choices.
For instance, does only including an ideal subgroup of participants indeed increase the
evidence for the presence of the effect? Do exclusions based on manipulation-checks
affect the evidence? Does the particular operationalization of a construct make a
difference? Furthermore, the Bayes factor model comparison approach allows for a
straightforward interpretation of the multiverse results; Bayes factors are continu-
ous measures of relative evidence for one model over another (e.g., a common-effect
model vs. a null model) so they can be compared across different multiverse paths.
Moreover, Bayes factors automatically take into account the sample size and reflect
the informativeness of the data.

Many Labs 4 Reanalysis

Given the outlined advantages of a full-scale analysis, in the following we will
present a Bayesian multiverse reanalysis of the Many Labs 4 data using hierarchi-
cal models. Note that we also conducted a Bayesian model-averaged meta-analysis
(Gronau, Heck, Berkhout, Haaf, & Wagenmakers, 2021), which is reported in the Ap-
pendix. The results of the model-averaged meta-analysis are qualitatively comparable
to those of the hierarchical modeling reported below.

A Brief History

In December 2019, the Many Labs 4 authors posted a preprint of the project on
PsyArXiv (Klein et al., 2019). Soon after, a critique of the analysis emerged in which
Chatard, Hirschberger, and Pyszczynski (2020) pointed out that Klein and colleagues
had not followed their own preregistered analysis. Chatard et al. (2020) argued that
the preregistration specified a minimum of 40 participants per experimental cell as
the threshold for sufficient power of any individual study, and therefore determined
a total of 80 participants as target sample size for each lab. When reanalyzing the
data from the Many Labs 4 project only including studies with 40 participants per
condition, Chatard et al. (2020) found a significant effect in line with the original
results. Intrigued by these divergent reports, we then decided to conduct a Bayesian
multiverse analysis. A preprint of this analysis was published in 2020 on PsyArXiv.
Then in 2022, Klein and colleagues published their final results in Collabra, after
which we also revisited the data, resulting in the current paper.
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Include or Exclude?

Which of the different proposed analyses –Klein or Chatard– is the correct one?
Based on theoretical arguments and (interpretations of) the preregistered plan, there
may be several valid answers to this question, and several levels of exclusion criteria
that ought to be considered to subset the full sample of 2,281 participants across 21
labs.

The full set of exclusion criteria employed by either Klein et al., Chatard et al.,
and ourselves consists of 5 layers of exclusion settings resulting in 3×3×2×2×2 = 72
constellations of exclusion criteria. In the Appendix, we report the full set of these
criteria as well as the rationale for choosing either of those. Table 1 shows all 45
unique constellations, the resulting number of studies and total number of included
participants (see the Appendix for a table with all 72 constellations). In short, the
participant-level criteria refer to theory-based arguments about among whom the
mortality salience effect should occur: According to the original authors the effect may
only be present among (2) those who self-identify as white and report to be born in
the United States or even only (3) those who are white, American-born, and strongly
identify with American culture (a score of 7 or higher on a 9-pt Likert scale). N-based
criteria refer to the inclusion of labs based on the number of participants recruited per
lab. Protocol criteria refer to the inclusion of both in-house labs and author-advised
labs or only the latter, based on the suggestion that the effect may only emerge in
author-advised studies as the mortality salience effect is highly sensitive to nuances
in the study implementation (Greenberg et al., 1994). Timing-based criteria address
Klein et al.’s decision to discard all observations collected by some in-house labs prior
to the preregistration date (February 15th, 2017), resulting in the exclusion of 566
participants (25.4%). While we considered this exclusion wasteful and unnecessary,
we added it as another layer in the multiverse analysis for the sake of completeness.
The final layer of exclusion settings refers to the way in which the participant-level
criteria are applied. That is, Klein et al. and Chatard et al. applied the participant-
level exclusion criteria only to the author-advised protocols, which means that for
exclusion criteria 2 and 3 all participants from the in-house labs where retained.
However, since exclusion criteria 2 and 3 were specified by the original authors as a
strict and genuine test of the theory, we believe that it is important to thoroughly
apply these criteria to all participants, even if this means discarding participants
where this information is unavailable.
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Table 1
Exclusion constellations and resulting sample sizes

Participant-level N-based Protocol Timing-based Apply P-based Sample Size Labs

All All All All AA only 2225 21
White & US-born All All All AA only 1880 21
US-Identity > 7 All All All AA only 1699 21
All N > 60 All All AA only 2067 17
White & US-born N > 60 All All AA only 1746 17
US-Identity > 7 N > 60 All All AA only 1593 17
All N > 80 All All AA only 1866 14
White & US-born N > 80 All All AA only 1545 14
US-Identity > 7 N > 80 All All AA only 1392 14
All All AA All AA only 798 9
White & US-born All AA All AA only 453 9
All N > 80 AA All AA only 699 7
White & US-born N > 80 AA All AA only 378 7
US-Identity > 7 N > 80 AA All AA only 225 7
All All All After prereg AA only 1659 20
White & US-born All All After prereg AA only 1314 20
US-Identity > 7 All All After prereg AA only 1133 20
All N > 60 All After prereg AA only 1544 17
White & US-born N > 60 All After prereg AA only 1223 17
US-Identity > 7 N > 60 All After prereg AA only 1070 17
All N > 80 All After prereg AA only 1343 14
White & US-born N > 80 All After prereg AA only 1022 14
US-Identity > 7 N > 80 All After prereg AA only 869 14
All All AA After prereg AA only 797 9
White & US-born All AA After prereg AA only 452 9
US-Identity > 7 All AA After prereg AA only 271 9
All N > 60 AA After prereg AA only 698 7
White & US-born N > 60 AA After prereg AA only 377 7
US-Identity > 7 N > 60 AA After prereg AA only 224 7
All All All All AA and IH 2211 21
White & US-born All All All AA and IH 983 16
US-Identity > 7 All All All AA and IH 272 9
All N > 60 All All AA and IH 2053 17
White & US-born N > 60 All All AA and IH 897 13
All N > 80 All All AA and IH 1852 14
White & US-born N > 80 All All AA and IH 864 12
All All AA All AA and IH 799 9
All N > 60 AA All AA and IH 700 7
All All All After prereg AA and IH 1650 20
White & US-born All All After prereg AA and IH 777 15
All N > 60 All After prereg AA and IH 1535 17
White & US-born N > 60 All After prereg AA and IH 702 13
All N > 80 All After prereg AA and IH 1334 14
White & US-born N > 80 All After prereg AA and IH 669 12

Note. Orange rows refer to Klein et al.’s key analyses; green rows refer to Chatard et al.’s key
analyses; purple rows refer to our currently chosen analyses; AA = author-advised; IH = in-house.
‘Apply P-based’ indicates whether the participant-level exclusion criteria are applied to the author-
advised labs only (retaining all in-house participants) or to both author-advised and in-house labs
(missing data excluded).
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In the following we will report a reanalysis for the three exclusion constellations
of the key analyses from Klein et al. (2022, orange rows in Table 1), the three exclusion
constellations from Chatard et al. (2020, green rows), and our own choice of exclusion
criteria (purple rows). Subsequently, lacking compelling argumentation for or against
any of the criteria, we decided to conduct an analysis based on the entire set of 45
unique constellations as a multiverse analysis (Steegen et al., 2016).

Disclosures

Preregistration

Our analyses, including prior settings, were preregistered on the Open Science
Framework (osf.io/ae4wx, see also Appendix C). However, we decided to deviate from
the preregistration by including more constellations of exclusion criteria. Specifically,
we originally planned to only use participant-level exclusion criterion 1 and later de-
cided to include all of them. Moreover, two additional exclusion layers only became
apparent after the final version of the Many Labs 4 report was published, namely those
related to the timing-based exclusion criteria and the application of the participant-
level criteria to the author-advised only or author-advised and in-house labs. We
believe that including these additional paths in the multiverse analysis helps to pro-
vide a more complete analysis. We also note that the preregistration includes both the
hierarchical analysis and the model-averaged meta-analysis. The latter is reported in
Appendix B.

Data and Materials

Readers can access the data and the R code to conduct all analyses (including
all figures) at github.com/SuzanneHoogeveen/ml4-reanalysis.

Reporting

This study involved an analysis of existing data rather than new data collection.

Ethical approval

No ethical approval was required for this work as we did not collect any data.

https://osf.io/ae4wx
https://github.com/SuzanneHoogeveen/ml4-reanalysis
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Methods

For Bayesian hierarchical modeling we take advantage of the open availability
of all collected data from the Many Labs 4 project. The dependent variable is the
same across all studies (i.e., identification with American culture, operationalized
through relative preference for American vs. non-American authors), and partici-
pants are nested in studies resulting in a hierarchical data structure. We employed a
modeling approach similar to the one developed for the embodied cognition reanal-
ysis by Rouder et al. (2019). That is, we used Bayes factor model comparison with
hierarchical models reflecting different structures of the data, varying in the extent to
which they constrain their predictions. We believe this approach satisfies the analytic
desiderata for team science projects outlined before, namely: appropriately account-
ing for the nested structure of the data without compromising on informativeness,
directly testing both the presence of an overall mortality salience effect, as well as the
presence of between-study heterogeneity, and reflecting theoretical constraints on the
direction of the effect.

Concretely, there are four models under consideration: (1) The null model cor-
responds to the notion that none of the studies show an effect; this model assumes
no overall experimental effect nor heterogeneity between studies (2) The common-
effect model corresponds to the notion that all studies show the same effect in the
expected direction; this model assumes no heterogeneity between studies (3) The
positive-effects model corresponds to the notion that all studies show an effect in the
expected direction, yet to varying degrees; and (4) the unconstrained model refers to
the notion that the overall effect and study effects may vary freely (in direction and
size). We compute Bayes factors for models (2), (3), and (4) against model (1), the
null model. Evidence for model (1) would indicate the absence of a mortality salience
effect across all labs; evidence for (2) would indicate that on average, people who
contemplate their own death identify more strongly with their culture than people
who contemplate watching TV, to a similar degree across labs; evidence for (3) would
indicate that in all of the labs, people who contemplate their own death identify more
strongly with their culture than people who contemplate watching TV, but to varying
degrees across labs; evidence for (4) would indicate that in some labs, people who
contemplate their own death identify more strongly with their culture than people
who contemplate watching TV whereas in other labs, people who contemplate watch-
ing TV identify more strongly with their culture than people who contemplate their
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own death.
Box 1. Model specifications

The base model for the mortality salience effect is a mixed linear model. Let Yijk

be the rating for the ith lab, the jth participant, and the kth condition. Then

Yijk ∼ N(αi + xkθi, σ2),

where αi is the ith lab’s specific overall culture identification rating effect, and θi

is the ith lab’s mortality salience effect. The variable xk = −0.5, 0.5 if k = 1, 2
respectively, with k = 1 when condition is ‘watching TV’ and k = 2 when
condition is ‘contemplate death’. Here, θi is the parameter of interest, that is
varied across models to reflect the different constraints. Specifically, for the null
model we specify θi = 0. For the common-effect model θi = v where v represents
the true value for the mortality salience effect that is constrained to be positive
(v > 0). For the positive-effects model θi comes from a distribution with a
mean mortality salience effect (µθ) and between-study variability in the size of
this effect (σ2

θ): θi ∼ N+(µθ, σ2
θ) where the N+ represents a normal distribution

truncated at below zero to reflect the prediction that θi > 0. Finally, for the
unconstrained model, we let θi free to vary in size and direction: θi ∼ N(µθ, σ2

θ).
There are two critical prior settings to consider: the scale setting on the

overall effect (µθ) and the scale setting on the between-lab heterogeneity (σ2
θ).

These scales can be roughly interpreted as standardized effect size such as Cohen’s
d. The scale on the overall effect corresponds to the expected size of the overall
effect. As Rouder et al. (2019), we set this scale to 0.4 since we expect a small-
to-medium effect size. The scale of the between-lab variance corresponds to the
expected amount of variability in effect size across studies. Again, we kept the
value of 0.24 as proposed by Rouder et al. (2019) – i.e., 60% of the expected
overall effect.

The Bayesian hierarchical modeling is conducted using the R-package
BayesFactor (Morey & Rouder, 2018).

Results

In the following, we will first reanalyze the data from the key findings reported
by Klein et al. (2022) using our proposed full-scale analysis, then those from Chatard
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et al. (2020), and finally report the analysis of the data based on our own choice of
exclusion criteria constellations.

Bayesian Reanalysis of Klein et al.’s Key Findings

Figure 1A shows the observed, unstandardized effects and the estimates from
the unconstrained hierarchical model for the first participant-level exclusion criterion.
This is the main analysis that is the basis for the key claims of the Many Labs 4
project, as reported in the published paper (Klein et al., 2022). The authors included
participants whose data was collected after the lead team posted their preregistration,
and only studies that featured more than 60 observations (before participant-level
exclusions). The participant-level exclusion criteria were only applied to author-
advised studies, while all participants from the in-house studies were retained.

As can be seen, there is considerable hierarchical shrinkage reducing the vari-
ability of estimated effects as compared to observed effects. Effect size estimates
from the unconstrained model (similar to Cohen’s d) are 0.02, 95% CI [−0.12, 0.16]
for participant-level exclusion criterion 1, 0.04, 95% CI [−0.11, 0.19] for exclusion cri-
terion 2, and 0.05, 95% CI [−0.22, 0.32] for exclusion criterion 3. Note that posterior
means are close to zero, and that all credible intervals cover zero. The estimates are
therefore consistent with the absence of an overall effect.

Bayes factors are shown in the first three rows of Table 2. BF0f refers to the
Bayes factor between the null model and the unconstrained model; BF01 refers to the
Bayes factor between the null model and the common-effect model where the overall
effect is positive and there is no variability between study effects; and BF0+ refers
to the Bayes factor between the null model and the positive-effects model where
study effects may vary but all are consistently positive. All Bayes factors are in
comparison to the preferred model, the null model, indicating evidence that none of
the studies show an effect. The second best model is the common-effect model where
all studies have the same, positive effect, and the Bayes factor between the null model
and the common-effect model is between 5.35-to-1 to 4.21-to-1 in favor of the null
model depending on the different participant-level exclusion criteria. If we allowed for
variability across effects but maintained that the effect should be present across all
studies, we would obtain strong evidence against this hypothesis, with Bayes factors
ranging between 629-to-1 and 158-to-1 in favor of the null model over the positive-
effects model. In sum, this pattern indicates evidence against an overall mortality
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Table 2
Bayes factors for key analyses.

Evidence
Participant-level N Labs BF0f BF01 BF0+ Effect [95% CI]
Klein et al. (2022)

All 1544 17 12.44 5.35 628.62 0.02 [-0.12, 0.16]
White & US-born 1223 17 9.35 4.21 204.55 0.04 [-0.11, 0.19]
US-Identity > 7 1070 17 6.95 4.50 157.52 0.05 [-0.11, 0.21]

Chatard et al. (2020)
All 699 7 14.61 2.16 13.32 0.08 [-0.12, 0.28]
White & US-born 378 7 6.76 0.95 2.61 0.14 [-0.11, 0.39]
US-Identity > 7 225 7 4.47 0.79 1.42 0.18 [-0.12, 0.49]

Current choice
All 2211 21 35.21 10.33 10,490.12 0.01 [-0.11, 0.12]
White & US-born 983 16 21.46 13.99 2,538.61 -0.04 [-0.20, 0.12]
US-Identity > 7 272 9 8.44 2.77 11.88 0.05 [-0.22, 0.32]

Note. All Bayes factors are reported in favor of the null model.

salience effect (null model), and even if there was an effect (common-effect model)
there is no evidence for variability of study effects. These results are consistent across
the three data sets, and they are in line with the estimation results shown in Figure
1.

In summary, the null results are consistent across participant-level exclusion
criteria. Even though the evidence against an effect is more pronounced when all
participants are included in the analysis, this pattern is easily explained by the res-
olution of the analysis with increasing numbers of observations: The smaller the
number of observations, the less evidence there is in any direction, and the wider the
estimated posterior distribution of the overall effect.

Bayesian Reanalysis of Chatard et al.’s Key Findings

We also reanalyzed Chatard et al.’s findings with a hierarchical modeling ap-
proach. Figure 2 shows study estimates from the unconstrained model for the un-
standardized effects. All confidence intervals and credible intervals cover zero.

Effect size estimates from the unconstrained model (similar to Cohen’s d) are
0.08, 95% CI [−0.12, 0.28] for participant-level exclusion criterion 1, 0.14, 95% CI
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Figure 1 . Forest plot with Bayesian parameter estimates for the key analyses by Klein
et al. for the three participant-level exclusion sets (applied to author-advised protocol
participants only) with data collected after the lead team posted their preregistration,
and only studies that featured more than 60 observations. A. Participant-level ex-
clusion set 1. The light orange squares represent unstandardized observed effects for
each study with 95% confidence intervals. The dark orange points represent estimated
unstandardized effects from the unconstrained model with 95% credible intervals. B.
Participant-level exclusion set 2. C. Participant-level exclusion set 3. The estimates
are sorted by the size of the observed effects for participant-level exclusion set 1 (i.e.,
panel A).
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[−0.11, 0.39] for participant-level exclusion criterion 2 and 0.18, 95% CI [−0.12, 0.49]
for participant-level exclusion criterion 3. Note that all credible intervals include
zero, and even though the posterior mean increases with more conservative exclusion
criteria, the width of the credible interval increases as well, implying increasing un-
certainty about the effect size. The posterior distribution of the overall effect size is
therefore again consistent with the absence of an overall effect.

The pattern of Bayes factors is somewhat less consistent across exclusions than
the estimation results. Bayes factors are shown in the middle three rows of Table 2.
The pattern of Bayes factors is dependent on the participant-level exclusion criterion.
Under participant-level exclusion criterion 1 the preferred model is the null model,
and it is weakly preferred over the second-best model, the common-effect model, by
a Bayes factor of BF01 = 2.16. For the other two exclusion criteria, the common-
effect is preferred over the null model but the Bayes factors are even weaker (1.06 and
1.29 in favor of the common-effect model over the null model). In sum, the Bayes
factors results are in line with the absence of any (consistent) evidence for or against
an effect. Across the three participant-level exclusion criteria, there is only weak
and inconsistent evidence for or against an overall mortality salience effect. Here,
we advice readers not to overly interpret whether the Bayes factor is 1.5-to-1 for or
against the overall effect – none of these Bayes factors are convincing. Instead, all of
the analyses in this section point to the conclusion that more data are needed. The
exclusion criteria applied here thinned out the data so much – in the final analytic
data set only 10% of the initial data is retained – so that no firm conclusion is possible
anymore.

Bayesian Analysis of our Current Choice

We also included an analysis of the Many Labs 4 data using our own choice
of the exclusion criteria. Following Klein et al. (2022) and Chatard et al. (2020),
we looked at all three participant-level exclusion criteria, while settling on one par-
ticular choice for the other factors that seemed most sensible to us. The goal for
this choice was to include the maximum number of participants but still adhering
to the recommendations by the original authors to give the effect the best chance.
Specifically, we included all complete data, from all labs and protocols and applied
the participant-level exclusions to both author-advised labs and in-house labs, dis-
carding missing values. For exclusion criterion 1 – completeness of the measures –,
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Figure 2 . Forest plot with Bayesian parameter estimates for the key analyses by
Chatard et al. for the three participant-level exclusion sets, only studies that featured
more than 80 observations, and for author-advised labs only. A. Participant-level
exclusion set 1. The light green squares represent unstandardized observed effects for
each study with 95% confidence intervals. The dark green points represent estimated
unstandardized effects from the unconstrained model with 95% credible intervals. B.
Participant-level exclusion set 2. C. Participant-level exclusion set 3. The estimates
are sorted by the size of the observed effects for participant-level exclusion set 1 (i.e.,
panel A).

we did retain participants for labs where no explicit information on missingness was
available, as long as they were assigned to an experimental condition and answered
both items of the dependent variable.1 Note that our choice of analysis paths leads
to quite variable numbers of participants (between N = 2,211 and N = 272).

Figure 3 shows the study estimates from the unconstrained model for the unstan-
dardized effects. Again, all confidence and credible intervals include zero. Effect size
estimates from the unconstrained model are 0.01, 95% CI [−0.11, 0.12] for participant-
level exclusion criterion 1, −0.04, 95% CI [−0.20, 0.12] for participant-level exclusion
criterion 2, and 0.05, 95% CI [−0.22, 0.32] for participant-level exclusion criterion 3.
Again, all credible intervals overlap with zero, and the width of the credible interval
increases with fewer observations included in the analysis, as less data implies more
uncertainty. Note that the absence of estimates for certain labs in panels B and C
of Figure 3 is due to the participant-level exclusion criteria leaving no participants in
these particular labs (rather than excluding any labs per se).

1Klein et al. (2022) also retained participants from one author-advised lab where information on
completeness of the data was unavailable, so we consider this a reasonable decision.
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The Bayes factors paint a similar picture; the evidence against the presence
of the mortality salience effect is stronger with a larger sample size. For the most
inclusive sample with exclusion criterion 1 (N = 2,211), the null model outperforms
the common-effect model by a factor of 10.33. For exclusion criterion 2, the estimated
effect goes slightly in the direction opposite to the hypothesis, hence the Bayes factor
more strongly favors the null-model over the common-effect model, BF01 = 13.99.
Finally, for the most strict exclusion criterion, only 272 observations are retained. As
a result, we get a much weaker Bayes factor of 2.77 in favor of the null-model over the
common-effect model. In sum, with our chosen set of exclusion criteria, we obtained
strong to weak evidence against the mortality salience effect.

Bayesian Multiverse Analysis Across All Exclusion Criteria

To assess the robustness of the previously reported results we conducted a mul-
tiverse analysis using the 45 unique data sets from Table 1. We used the same
hierarchical model construction as reported above and report here the Bayes factors
for the presence of an effect against its absence. The Bayes factors are plotted in
Figure 4 (y-axis). Bayes factors in favor of the mortality salience effect are above the
horizontal line, and Bayes factors against the mortality salience effect are below the
horizontal line. The BFeffect0 is the weighted average of the evidence for the common-
effect versus the null model and the unconstrained model (varying effect) versus the
null model. The x-axis refers to the evidence for between-study heterogeneity in the
data. The BFheterogeneity0 is calculated by taking the evidence for the unconstrained
model versus the common-effect model. The size of the points reflects the number
of participants whose data are included in the analysis and the color of the points
highlights the key analyses described before.

The majority of Bayes factors are in line with the absence of the mortality
salience effect. Because the Bayes factor depends on the sample size, more evidence
against morality salience comes from analyses that are based on more data (i.e., larger
number of included participants and studies). Only two constellations of exclusion
criteria provide evidence for the mortality salience effect. Additionally, none of the
analysis paths provide evidence for heterogeneity (all BFheterogeneity0 < 0).

In sum, the evidence against the mortality salience effect appears relatively
robust against choices of exclusion criteria. When conducting a large number of
analyses on the same data some of these analyses will almost inevitably lead to
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Figure 3 . Forest plot with Bayesian parameter estimates for the key analyses of
our choice for the three participant-level exclusion sets (applied to both author-
advised and in-house protocol participants), including all participants and all labs. A.
Participant-level exclusion set 1. The light purple squares represent unstandardized
observed effects for each study with 95% confidence intervals. The dark purple points
represent estimated unstandardized effects from the unconstrained model with 95%
credible intervals. B. Participant-level exclusion set 2. C. Participant-level exclusion
set 3. The estimates are sorted by the size of the observed effects for participant-level
exclusion set 1 (i.e., panel A).
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Figure 4 . Results from the Bayesian multiverse analysis: Bayes factors in favor of
a mortality salience effect are above the horizontal line, Bayes factors against the
mortality salience effect are below the horizontal line. All analyses provide evidence
against between-study heterogeneity as shown by all heterogeneity Bayes factors are
smaller than 1 on the x-axis. The color of the points refers to the different key analyses
sets, and the size of the points refers to the number of participants the analysis is
based on. All but 2 of analyses provide evidence against the mortality salience effect.

evidence in the opposite direction than the overall results. This is especially the
case when the data provide relatively weak evidence (Bayes factors less than 5-to-1
against an effect). Bayes factors close to 1 signal a lack of resolution of the data
and therefore the absence of evidence for or against an effect. When the number
of participants is high and many studies are included there is convincing evidence
against the mortality salience effect. The two Bayes factors that are weakly in favor
of the mortality salience effect are based on less than half of the original data and
prefer the presence of the effect only by a factor of 1.5 and 1.7.

Prior Sensitivity

In addition to assessing the effects of various data exclusion decisions, we might
also investigate the role of prior choices on inference. Specifically, we looked at the
dependence of the Bayes factors on the prior settings for the overall effect and for
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the between-study variability. While some researchers have argued that the influence
of the prior on the results should be minimized (e.g., by using uninformative default
settings; Aitkin, 1991; Gelman, Carlin, Stern, & Rubin, 2004; Kruschke, 2013), we
believe the influence of the prior is a meaningful and inherently informative element of
Bayesian inference (Rouder et al., 2018; Vanpaemel, 2010). Nevertheless, the extent
to which reasonable prior choices affect the results clearly speaks to the robustness
of the conclusions.

For the main analysis, we used a scale of 0.4 on the overall effect (µθ)and 0.24
on the between-study variability (σ2

θ), indicating an expected effect size of Cohen’s
d around 0.4 and 60% of that effect size for the variability between labs (see top
rows for each analysis set in Table 3). To examine the Bayes factors under different
prior settings, we systematically both doubled and halved the scales on µθ and σ2

θ ,
reflecting expectations of a small effect, a medium-to-large effect, very little between-
study variability and medium between-study variability.

Table 3 shows the Bayes factors resulting from crossing these combinations
for the key analyses (for participant-level exclusion set 1) and Figure 5 shows the
evidence across all 45 unique data exclusion paths for each of the 4 different prior
setting combinations. Most support for the effect is obtained under the expectation
of a small effect and most support for between-study heterogeneity is obtained under
the expectation of little between-study variability. Nevertheless, across all settings,
evidence somewhat in favor of a mortality salience effect only occurs in 12/180 (6.7%)
paths. Evidence in favor of heterogeneity across studies is obtained under 2/180
(1.1%) paths. Another observation from these plots is that while the prior setting
for the overall effect changes the global strength of the evidence, it does not appear
to affect the multiverse paths differentially, as the dots seem to move upwards or
downward uniformly. In contrast, the prior setting for the between-study variability
not only affects the overall evidence for heterogeneity, it also influences the range of
the Bayes factors between multiverse paths. Specifically, the prior expectation of little
variability reduces the evidence against heterogeneity and makes the Bayes factors
more similar across paths, whereas the expectation of much variability not only leads
to more evidence against heterogeneity but also enhances the differences between
paths. In sum, choices of prior scales can slightly boost or reduce the evidence in
favor of the effect. Yet, in this case, the effects of reasonable prior choices are rather
contained; the null-model is still consistently preferred over models with a mortality
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Table 3
Bayes factors for key analyses (participant-level exclu-
sion set 1) under different prior settings.
scale on µθ scale on σ2

θ BF01 BF0f BF0+

Klein et al. (2022)
0.40 0.24 5.41 12.50 791.66
0.20 0.12 2.86 3.92 24.79
0.20 0.48 2.85 27.14 90,214.79
0.60 0.12 7.93 11.18 19.35
0.60 0.48 7.79 76.50 246,167.53

Chatard et al. (2020)
0.40 0.24 2.17 14.97 13.93
0.20 0.12 1.32 4.41 2.27
0.20 0.48 1.30 35.54 180.27
0.60 0.12 3.14 9.86 1.82
0.60 0.48 3.14 83.13 191.19

Current choice
0.40 0.24 10.28 35.75 12,127.13
0.20 0.12 5.28 8.70 166.42
0.20 0.48 5.27 119.11 ∞
0.60 0.12 15.37 25.91 174.74
0.60 0.48 15.08 324.46 ∞

Note. All Bayes factors are reported in favor of the null
model.

salience effect.

Conclusion

We conducted a Bayesian reanalysis of the Many Labs 4 project with varying
exclusion criteria and prior settings. In a Bayesian multiverse analysis using hier-
archical models we calculated a total of 45 sets of Bayes factors based on different
combinations of 5 layers of data exclusion criteria derived from the Many Labs 4 pre-
registration, the comment by Chatard et al. (2020), the published article by Klein et
al. (2022) and our own judgments. 43 out of 45 Bayes factors provide evidence against
an overall mortality salience effect, ranging between 1.32-to-1 and 16.94-to-1 in favor
of the absence of an effect. The remaining four Bayes factors provide only weak ev-
idence for the presence of such an effect, ranging between 1.45-to-1 and 1.68-to-1 in
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Figure 5 . Results from the Bayesian multiverse analysis under different prior settings
for the overall effect and the between-study variance in the effect. The arrows show
the overall trend relative to the main analysis with the primary prior settings.

favor of the presence of an effect. Additionally, we find some evidence against hetero-
geneity of effects across studies. Finally, the pattern of results remains qualitatively
equal under different reasonable prior settings for the overall effect and the between-
study variability. In combination, we would argue we conducted a full-scale analysis
of the data provided by the Many Labs 4 project, an inspection from various different
angles. Even if we do not believe the evidence from this full-scale analysis and assume
there is an effect, this effect is so small (between d = −0.04 and d = 0.18) that it
renders the entire field of mortality salience studies as uninformative: Most of the
studies conducted in the past would have been vastly underpowered, would require a
very specific subgroup of participants, and would therefore also not be generalizable
across a broader range of the population.

Our analyses revealed that the evidence is relatively consistent across different
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exclusion criteria. For the current analysis, we assumed that all exclusion criteria are
equally plausible. With this assumption we implicitly assigned an equal weight to all
analyses. However, we admit that this may not be the case. Chatard et al. (2020)
argue that their chosen criteria are superior when considering theoretical arguments
and study planning. With their analysis, they implicitly introduced a weighing where
all other exclusion options received a weight of zero. Readers can choose these weights
themselves when they consider how to interpret the results reported here.2

There are additional issues with selectively subsetting and reanalyzing data sets.
A key danger is that for some subsets one always finds results opposite of the con-
clusions from the analysis of the full data set. On the study level, researchers should
therefore first ensure that there is evidence for variability of studies that warrants
such subsetting (Harrer, Cuijpers, Furukawa, & Ebert, 2021, Chapter 5). In the cur-
rent analysis, we found evidence against study heterogeneity. When interpreting the
results we therefore recommend to rely mainly on the estimates from the full data
set. Additionally, subsetting the data inevitably reduces the resolution to detect an
effect. The critics of the Many Labs 4 project (Chatard et al., 2020) based their
main conclusions on analyses with smaller sample sizes. Ironically, while Chatard et
al. (2020) argued that sample size should be considered when including studies their
exclusion criteria actually reduced the power of the meta-analysis overall. To tackle
this issue – and if there was evidence for study heterogeneity – one could include
some of the subsetting criteria as dummy-coded predictor in the hierarchical model
instead of disregarding the data all together (e.g., author-advised vs. in-house).

Furthermore, we believe the Many Labs 4 case and its development from
preprint to published article highlights an important potential drawback of prereg-
istration. In the final article, the Many Labs 4 lead team decided to discard all
observations collected prior to the preregistration date, resulting in the removal of
more than a quarter of the data. As mentioned, we consider this removal of data
wasteful and unnecessary. In this case, we believe the fact that data collection was
crowd-sourced and the added value of retaining 556 perfectly valid observations jus-
tify “breaking the strict rules of preregistation” that data collection should only start
after the analysis plan has been preregistered. As noted by DeHaven (2017), prereg-
istration is “a plan, not a prison”. So rather than discarding a large portion of the

2Ideally, as with the data exclusion criteria themselves, their weights in a multiverse analysis
should be chosen before knowing – or at least without consideration of – the results.
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data for the main analyses, we believe a transparent statement on the timing issue
would have sufficed in this case. In general, preregistration by definition should not
trump common sense and researchers’ judgment.

In summary, the multiverse analysis conducted here shows a certain conver-
gence of results. Even though the degree of evidence varies, models with no effect
of mortality salience are mostly preferred over models with an effect of mortality
salience. This result highlights the robustness against choices of exclusion criteria.
The Bayesian multiverse approach using hierarchical models provides rich results that
go much beyond the original analyses by the Many Labs 4 team. In particular, we
believe the current approach satisfies the desiderata of a full-scale analysis in team
science projects: (1) providing evidence on a continuous scale from evidence against
the crucial effect through inconclusive evidence to evidence in favor of the crucial
effect, (2) applying hierarchical modeling to appropriately account for the nested
structure of the data, (3) evaluating both the evidence for the experimental effect
and the evidence for between-lab heterogeneity, (4) reflecting theoretical constraints
on the effect of interest (i.e., ordinal constraints), and (5) evaluating the robustness
of the findings by exploring a multitude of relevant analysis paths.

Both Bayes factor model comparison and Bayesian hierarchical modeling are
gaining popularity in psychological science. Recent tutorial papers make these ap-
proaches more accessible; for instance, see Wagenmakers et al. (2018) and Rouder
et al. (2018) for an introduction to Bayes factor model comparison and Veenman
et al. (2022) and Rouder and Province (2019) for tutorials on Bayesian hierarchi-
cal modeling. Finally, the ease and informativeness of Bayesian multiverse analy-
ses show that this approach should be more generally used to analyze team science
projects. The current analyses were conducted in R, and the code is provided at
github.com/SuzanneHoogeveen/ml4-reanalysis.

General Recommendations

In sum, we believe the amount of time and effort spent on team science projects
and the resulting wealth of data, deserve a full-scale analysis. We believe a Bayesian
hierarchical modeling approach is ideally suited for such an analysis as it allows
evidence to be quantified both for and against an effect of interest, and it facilitates
the consideration of theoretical constraint in the data. In the following, we will
highlight four additional general recommendations for team science that facilitate a

https://github.com/SuzanneHoogeveen/ml4-reanalysis
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full-scale analysis.
Our first recommendation is to use all data that are available. Most directly,

this means using a hierarchical model with all primary data nested in studies rather
than a meta-analysis based on compressed and aggregated data. Furthermore, while
participant-level exclusions may be explored (see point 2), we would advice never
to apply study-level exclusions based on sample size. In particular, more data al-
ways means more statistical power and more resolution. Additionally, hierarchical
shrinkage will automatically reduce the influence of outlying labs with relatively few
observations by more strongly pulling these observations towards the global estimate.

Our second recommendation is to conduct a multiverse analysis (Steegen et
al., 2016) to investigate the evidence across different reasonable exclusion criteria,
model choices, or prior settings. As illustrated by the Many Labs 4 project, team
science efforts often involve a range of reasonable options for data exclusion criteria,
prior settings, and perhaps other analytic choices. In order to get a full picture of
the robustness and potential relevant dimensions of the data affecting the outcomes,
analysts could explore multiple analytic paths (see also: Tierney et al., in preparation,
2021). In some cases it might make sense to apply different weights to different paths
of the multiverse, for instance based on theoretical or methodological grounds.

Our third recommendation is to preregister but remain open to justifiable devi-
ations. Especially in highly complex projects with crowd-sourced data collection and
many involved parties, unexpected events and deviations are the norm rather than
the exception. At least in our personal experience, none of the team science projects
went exactly as planned, and many required reconsideration of preregistered choices
(e.g., Hoogeveen, Haaf, et al., 2022; Hoogeveen, Sarafoglou, et al., 2022; Tierney et
al., in preparation, 2021). While full transparency is clearly key in these situations,
we believe the quality of the eventual analysis and hence the validity of the conclu-
sions should outweigh the strict adherence to the preregistration. Another option
to ensure uncontaminated data analysis would be to use blinded analysis (MacCoun
& Perlmutter, 2015, 2018), in which analysts perform their analysis on an altered
version of the data (e.g., shuffling the dependent variable, adding noise to the data,
or switching labels of categorical variables). Only after the analysts are fully satis-
fied with the analysis, the blind is lifted and the real data are revealed (see Dutilh,
Sarafoglou, & Wagenmakers, 2019; Sarafoglou, Hoogeveen, & Wagenmakers, 2022 for
more information on analysis blinding).
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Our fourth recommendation is to consider collaborating with methodologists
on the statistical analysis. Typically, team science efforts involve relatively extensive
and complex data (e.g., hierarchically structured). We believe the time and effort
put into data collection and study design also justify spending some additional time,
effort, and resources on data analysis expertise. For the sake of illustration: if we
imagine that each participating lab in the Many Labs 4 project invested 15 minutes
per participant, this comes down to 21 labs spending about 1,589 minutes on data
collection, for a total of 556 hours.3 Given this huge investment of time and effort,
the overall project quality might benefit from also matching the investment into the
analysis, potentially by outsourcing the analysis to methodological and statistical
experts. At least in our personal experience, experts are often eager to help out (and
get their hands on “real data” for a change). For example, we have been involved
in the data analysis for a couple of team science projects (e.g., Camerer et al., 2018;
Tierney et al., in preparation, 2021). Having an independent analysis team may also
make it easier to justify deviations from the preregistration and to apply differential
weights to paths in the multiverse analysis, as either of these decisions can be made
independently from the analysts.

The idea of team science efforts such as the Many Labs projects is that the
robustness of empirical phenomena becomes clear when data are collected across
several labs. Similarly, the robustness of statistical conclusions becomes clear when
data are analyzed using several thoughtfully selected models in a full-scale analysis
(Wagenmakers et al., 2022). A complete assessment of robustness and uncertainty
therefore requires many labs, many models, perhaps many analysis paths, and ideally
many collaborating experts.
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Appendix A: Full Sets of Exclusion Criteria

Both Klein et al. (2022) and Chatard et al. (2020) agreed on three participant-
level exclusion criteria (the last two are suggested by the original authors – Greenberg,
Pyszczynski, and Solomon –, who were consulted by the Many Labs 4 team):

1. Exclude participants who did not respond to all prompts of the dependent
variable (leaving N = 2,225).

2. In addition to exclusion criterion 1, exclude participants who do not self-identify
as white and/or who report not to be born in the United States (leaving N =
1,880).4

3. In addition to exclusion criteria 1 and 2, exclude participants who responded
below 7 on the 9-point American Identity item (leaving N = 1,699).

Note that both Klein et al. (2022) and Chatard et al. (2020) applied the
participant-level exclusion criteria only to the author-advised protocols, which means
that for exclusion criteria 2 and 3 all participants from the in-house labs where re-
tained. The reason for this approach is that for many in-house labs, the necessary in-
formation to apply these criteria was often unavailable. However, this choice indicates
that the authors implicitly assumed that all in-house participants were white, born in
the US, and strongly identified with American culture. Data from the author-advised
labs nonetheless showed that only 56.5% of participants self-identified as white and
were born in the US (i.e., exclusion criterion 2) and only 33.8% were white, born
in the US, and strongly identified with American culture (i.e., exclusion criterion 3).
Since exclusion criteria 2 and 3 were specified by the original authors as a strict and
genuine test of the theory, we believe that it is important to thoroughly apply these
criteria to all participants, even if this means discarding participants where this in-
formation is unavailable. In addition, for some of the in-house labs, information on
ethnicity and country of birth was in fact available, so retaining participants who
do not meet the criterion seems hard to defend. Based on these considerations, we
included another layer to the exclusion constellations related to the application of the
participant-level exclusion criteria:

4The argument is that the effect may only be present for participants who strongly identify
with pro-American worldviews. We included participants who did identify as white in addition to
another ethnicity, i.e., who are multiracial. We consider this the most appropriate interpretation of
the preregistered ethnicity criterion.
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1. Apply participant-level criteria to author-advised labs only (retaining all in-
house participants)

2. Apply participant-level criteria to both author-advised labs and in-house labs
(discarding all missing values on the relevant variables).

In addition to the participant-level exclusion criteria, power considerations moti-
vated three different study-level exclusion criteria. We refer to these exclusion criteria
as N-based criteria.

1. Include data from all labs (leaving K = 21 studies).

2. Exclude labs with fewer than 60 participants (leaving K = 17 studies).

3. Exclude labs with fewer than 40 participants per condition (leaving K = 13
studies).

Note that N-based exclusion criterion 2 was preregistered by Klein et al. (2022):
“Samples will be included as long as they collect at least 60 participants by the
time data collection ends” (see preregistration document, osf.io/4xx6w). While the
authors had not applied any N-based exclusion criteria in the preprint, they did
so in the published version (Klein et al., 2022). In contrast, Chatard et al. (2020)
derive exclusion criterion 3 from the target sample size specified in the preregistration
document, although it is never mentioned as a criterion for exclusion. We decided to
add both exclusion criteria for the sake of comparison.

Moreover, Greenberg et al. (1994) suggested that the effect may only emerge in
author-advised studies as the mortality salience effect is highly sensitive to nuances
in the study implementation. Therefore, the following distinction may constitute an
additional set of study-level exclusion criteria. We refer to these exclusion criteria as
Protocol criteria.

1. Include all studies (leaving K = 21).

2. Exclude all In-House studies (leaving K = 9).

Lastly, in the published version, Klein et al. (2022) added an another layer of
exclusion settings related to the timing of the data collection. As some In-House labs
had started data collection before the lead team’s analysis plan was finalized, Klein

https://osf.io/4xx6w
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et al. (2022) decided to discard all observations collected prior to the preregistra-
tion date (February 15th, 2017). This resulted in the exclusion of 566 participants
(25.4%). We consider this exclusion wasteful and unnecessary, since it concerned
only In-House studies that were free to design their own protocols. Moreover, the
lead team had not accessed or inspected the data collected by the different labs prior
to their preregistration, so the analysis plan could not have been contaminated by the
already-collected data.5 For the sake of completeness, we included the timing-based
exclusion setting as another layer in the multiverse analysis:

1. Include data collected anytime.

2. Exclude data collected before the lead team’s analysis plan was preregistered
(i.e., February 15th, 2017).

These 5 layers of exclusion settings result in 3×3×2×2×2 = 72 constellations of
exclusion criteria. Note that some of the criteria are completely overlapping (e.g., only
author-advised labs recorded American identity, hence all in-house labs are excluded
for the third participant-level exclusion set). As a result, there are 45 instead of
72 unique constellations. Table 1 shows all 45 unique constellations, the resulting
number of studies and total number of included participants (see Appendix C for a
table with all 72 constellations).

In the published article, Klein et al. (2022) based their main conclusions on three
of these constellations (orange rows in Table 1): Including studies from labs with more
than 60 participants, excluding data that was collected prior to the preregistration
date, including both author-advised and in-house protocols, varying the participant-
level exclusion criteria while applying these only to participants from author-advised
labs.6 Similarly, even though Chatard et al. (2020) conducted a variety of analyses
in their comment, they based their key conclusions on three different constellations
of criteria (green rows): Excluding studies with fewer than 40 participants per con-
dition (N > 80), excluding In-House studies, including data collected at any time,
with varying participant-level exclusion criteria, applied to only the author-advised

5Note that the timing-based criteria and the application of the participant-level criteria are
actually irrelevant for the key analyses by Chatard et al. (2020), as they only affect in-house protocols
which the authors excluded anyways.

6We note that the preprinted version by Klein et al. (2019) adopted different exclusion criteria;
no timing-based exclusions were applied nor any study-level exclusions.



STATISTICAL ANALYSIS IN TEAM SCIENCE 38

protocols. The purple rows correspond to our own choice of analysis paths. Specif-
ically, we included all complete data, from all labs and protocols and applied the
participant-level exclusions to both author-advised labs and in-house labs, discarding
missing values.

Appendix B: Bayesian Model-averaged Meta-analysis

Here, we report the results of an alternative Bayesian analysis for team science
projects data: a Bayesian model-averaged meta-analysis (Gronau et al., 2021, 2017).
For the meta-analysis, the data from each lab are summarized with an effect size
estimate and standard error, and these statistics are then analyzed using a linear
model.

Methods

Both classical and Bayesian meta-analysis typically consider four different mod-
els: (1) fixed-effect null model, (2) fixed-effect alternative model, (3) random-effects
null model, and (4) random-effects alternative model. In Bayesian model comparison,
we may now compute Bayes factors to compare any two of these models. Bayesian
model averaging (e.g., Hinne, Gronau, van den Bergh, & Wagenmakers, 2020) allows
for broader inference when considering several models simultaneously. Using model
averaging one can calculate the evidence for the presence of an effect while taking into
account uncertainty with respect to choosing a specific model. For the application
here, this logic implies that we can assess evidence for the mortality salience effect
without committing to the fixed-effect or random-effects models.

Specifically, the model-averaged Bayes factor in favor of the presence of an effect
is obtained by comparing the models that allow for the presence of an effect (i.e., (2)
and (4) above) to the models that state the effect is absent (i.e., (1) and (3) above).
In a similar fashion one can calculate the model-averaged Bayes factor in favor of the
presence of between-study heterogeneity by comparing the models that allow for the
presence of between-study heterogeneity (i.e., (3) and (4) above) to the models that
state between-study heterogeneity is absent (i.e., (1) and (2) above).

We follow Gronau et al. (2021) for the specification of our Bayesian model-
averaged meta-analysis. To conduct such an analysis, one needs to specify priors
for the overall effect size across labs and the between-study standard deviation. For
the between-study standard deviation we follow Gronau et al. (2017) and use an
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Inverse-Gamma(1, 0.15) prior. This prior is based on the empirical assessment of
effect sizes from meta-analyses reported in Psychological Bulletin in the years 1990–
2013 (van Erp, Verhagen, Grasman, & Wagenmakers, 2017). Van Erp et al. (2017)
gathered all non-zero between-study standard deviation estimates for meta-analyses
on standardized mean differences (e.g. Cohen’s d), and the histogram approximately
followed this distribution. For the overall effect size, we considered three different
prior settings: (1) a zero-centered Cauchy distribution with scale 1

√
2 ≈ 0.707 (default

prior, Morey & Rouder, 2018), (2) a t-distribution with location 0.35, scale 0.102, and
3 degrees of freedom (Oosterwijk prior7), and (3) a normal distribution with mean
0.3 and standard deviation 0.15 (Vohs prior8). In line with the mortality salience
hypothesis, all prior distributions on the overall effect size were truncated below at
zero to allow only effect sizes in the expected direction. Readers interested in Bayesian
model-averaging in meta-analysis may consult Gronau et al. (2017), Scheibehenne,
Gronau, Jamil, and Wagenmakers (2017), and Landy et al. (2020). The Bayesian
model-averaged meta-analyses are conducted using the R-package metaBMA (Heck &
Gronau, 2017).

Results

Model-averaged Meta-analysis of Klein et al.

In order to estimate the overall effect size across studies (Hedges’ g) we used the
same model as was used to estimate the individual-study effects (i.e., a random-effects
alternative model with the default prior). For the sample under participant-level ex-
clusion criterion 1 the overall effect size is estimated as 0.06, 95%CI = [−0.06, 0.18];
for participant-level exclusion criterion 2 the overall effect size is estimated as
0.09, 95%CI = [−0.05, 0.22]; and for participant-level exclusion criterion 3 the overall
effect size is estimated as 0.08, 95%CI = [−0.06, 0.23]. The most consistent pattern is
that the credible interval slightly widens when the exclusion criterion becomes more
restrictive. Overall, these estimates are more consistent with the absence of an effect
rather than its presence.

To quantify the absence or presence of an effect we now turn to Bayes factor
7This Oosterwijk prior has been elicited for a reanalysis of a social psychology study (Gronau et

al., 2017), but we believe it is a reasonable prior for many psychological studies more generally.
8This Vohs prior has been specified by ego depletion experts to analyze ego depletion replication

studies (Vohs et al., 2021).
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Table 4
Model-averaged Bayes factors for key analyses.

Effect BF01 Heterogeneity BF01

Participant-level N Labs Default Oosterwijk Vohs Default

Klein et al. (2022)
All 1544 17 4.45 10.71 4.18 1.89
White & US-born 1223 17 2.79 5.02 2.14 1.45
US-Identity > 7 1070 17 3.34 5.90 2.57 1.33

Chatard et al. (2020)
All 699 7 4.04 6.36 2.97 2.63
White & US-born 378 7 1.43 0.90 0.66 2.06
US-Identity > 7 225 7 1.44 0.72 0.62 1.88

Current choice
All 2211 21 12.60 44.69 16.64 2.28
White & US-born 983 16 19.42 67.73 25.90 2.03
US-Identity > 7 272 9 4.13 3.90 2.44 1.79

Note. All Bayes factors are reported in favor of the null model. The different column
names for the effect BF01 refer to the different priors used.

model comparison. The Bayes factors for the key analyses from Klein et al. (2022)
are shown in the top three rows of Table 4. The first three Bayes factors in each row
are model-averaged Bayes factors referring to evidence against an overall effect. All
analyses across participant-level exclusions and prior choices provide evidence against
an overall effect, with Bayes factors ranging from 10.71-to-1 to 2.14-to-1 in favor of
the null model. Note that the Oosterwijk prior is the most optimistic prior with the
least probability density close to zero. Therefore, the Bayes factors are somewhat
larger for this prior—the optimistic predictions that follow from the Oosterwijk prior
are least consistent with what the data show, which are effect sizes close to zero. The
last Bayes factor in each row indicates evidence against heterogeneity of study effects
averaged across models with and without an overall effect. These Bayes factors reflect
that there is some evidence against study heterogeneity. In sum, the pattern of Bayes
factors indicates evidence against an overall mortality salience effect across the three
prior settings and the three data sets. These results are in line with the overall effect
size estimates from a two-sided model.
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Model-averaged Meta-analysis of Chatard et al.

For the reanalysis of the key findings of Chatard et al. (2020) we estimated
the overall effect size across studies (Hedges’ g) using the settings from the de-
fault prior without constraining the direction of the overall effect. We did so for
all data sets using the three participant-level exclusion criteria, only studies that
had more than 40 participants per cell collected, and only author-advised stud-
ies. For participant-level exclusion criterion 1 the overall effect size is estimated
as 0.08, 95%CI = [−0.10, 0.25]; for exclusion criterion 2 the overall effect size is
estimated as 0.16, 95%CI = [−0.08, 0.41]; and for exclusion criterion 3 the overall
effect size is estimated as 0.18, 95%CI = [−0.10, 0.47]. While the point estimates
are considerably larger than the ones when all protocols are included, the posterior
distributions and therefore also the credible intervals are considerably wider due to
much smaller sample sizes. In this analysis, only seven studies were included, and
only between 699 and 225 participants.

To quantify the absence or presence of an effect we again computed model-
averaged Bayes factors. These are shown in the middle three rows of Table 4. The first
three Bayes factors in each row are model-averaged Bayes factors referring to evidence
against an overall effect using different prior distributions. Here, the pattern is a bit
more inconsistent than in the Klein et al. reanalysis, and the outcome depends on a
combination of the prior settings and exclusion criteria: Bayes factors (weakly) favor
the absence of an effect over its presence for all priors if participant-level exclusion
criterion 1 is applied. For the smaller data sets using criteria 2 or 3, the Bayes factors
are essentially inconclusive - for the default prior the Bayes factors are still in favor of
the null hypothesis but close to 1. For the other two prior setting the Bayes factors are
in favor of the presence of an effect but, again, close to 1. The largest Bayes factor in
favor of the presence of an effect is with the Vohs prior, and participant-level exclusion
setting 3.

The last column in Table 4 shows the model-averaged Bayes factor quantifying
evidence against heterogeneity of effect sizes across labs. Again, there is weak evidence
against heterogeneity. In sum, this pattern is in line with the absence of evidence for
or against an overall mortality salience effect.
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Model-averaged Meta-analysis of our own choice

For our own choice of exclusion criteria settings, we also conducted a model-
averaged meta-analysis. That is, we estimated the overall effect size across studies
(Hedges’ g) for the three participant-level exclusion criteria applied to both author-
advised labs and in-house labs –discarding missing values–, while including all com-
plete data, from all labs and protocols.

Effect size estimates from the random effects model with the default prior are
0.03, 95% CI [−0.07, 0.13] for participant-level exclusion criterion 1, −0.03, 95% CI
[−0.17, 0.13] for participant-level exclusion criterion 2, and 0.07, 95% CI [−0.20, 0.34]
for participant-level exclusion criterion 3. Again, all credible intervals overlap with
zero, and the width of the credible interval increases with fewer observations included
in the analysis, as less data implies more uncertainty.

Similar to the analysis of Klein et al.’s key findings, the Bayes factors indicate
evidence against the mortality salience effect. All analyses across participant-level
exclusions and prior choices provide evidence against an overall effect, with Bayes
factors ranging from 67.73-to-1 to 2.44-to-1 in favor of the null model. For exclusion
criteria 1 and 2, the data strongly prefer the null model across all prior setting. Mir-
roring the Klein et al. analysis, the strongest evidence against the effect is obtained
under the most optimistic prior, namely the Oosterwijk prior. These Bayes factors
for the heterogeneity between studies again reflect that there is some evidence against
study heterogeneity.

Model-averaged Meta-analysis Multiverse

As with the hierarchical analysis, we also conducted a multiverse analysis across
all unique data exclusion constellations using the Bayesian model-averaged meta-
analytic approach. The analysis is conducted using the three different prior distribu-
tions, the default prior, the Oosterwijk prior, and the Vohs prior. The results of this
analysis are shown in Figure 6. The Bayes factors for the mortality salience effect
are plotted on the y-axis and the Bayes factors for between-study heterogeneity are
plotted on the x-axis. Bayes factors in favor of the mortality salience effect are above
the horizontal line, and Bayes factors against the mortality salience effect are below
the horizontal line. The size of the point reflects the number of participants included
in the analysis. The majority of Bayes factors are in line with the absence of the
mortality salience effect and all Bayes factors indicate evidence against heterogeneity.
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Figure 6 . Results from the multiverse analysis for the model-averaged meta-analysis:
Bayes factors in favor of a mortality salience effect are above the horizontal line, Bayes
factors against the mortality salience effect are below the horizontal line. All analyses
provide evidence against between-study heterogeneity as shown by all heterogeneity
Bayes factors are smaller than 1 on the x-axis. The color of the points refers to the
different key analyses sets, the shape of the points refers the different prior settings in
the meta-analysis, and the size of the points refers to the number of participants the
analysis is based on. The majority of analyses provide evidence against the mortality
salience effect.

Because the Bayes factor depends on the sample size, as a general trend, more evi-
dence against morality salience comes from analyses that are based on more data (i.e.,
larger number of included participants). To inspect the effect of prior settings one can
view the pattern of the different shapes in Figure 6. Remember that the default prior
is the most vague prior and the Oosterwijk prior is more optimistic than the Vohs
prior. For most data sets Bayes factors are larger for more optimistic priors because
evidence against optimistic and informed models accumulates faster when comparing
to a null model. A final pattern that emerges from Figure 6 that was not observed
in the hierarchical analysis, is the positive correlation between evidence for the effect
and for heterogeneity; analyses that provide stronger evidence against the mortality
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salience effect also provide stronger evidence against between-study heterogeneity,
and vice versa.

Appendix C: Preregistration

We will conduct a re-analysis of the Many Labs 4 project (Klein et al., 2019)
using Bayesian meta-analytic techniques and multilevel modeling. There has been
some debate about the preregistered exclusion criteria leading to a comment on the
original manuscript by Chatard et al. (2020). The authors of the comment note
that the mortality salience effect is present in the data, but can be statistically de-
tected only when small studies (<40 participants per cell) are excluded and if only
expert-advised studies are included. In the preregistration document the Many Labs
4 authors indeed state that power is deemed sufficient if 40 participants per cell (i.e.
80 participants in total) are collected, but the explicit exclusion criterion is 60 par-
ticipants per study with no requirement on minimum sample size for the two cells.
Only including expert-advised studies for the analysis was not preregistered.

In sum, there are now four different possible exclusion criteria under consider-
ation. While we believe that the decision to exclude small studies from the meta-
analysis is somewhat unusual—after all, the meta-analytic model is constructed to
take sample size into account—, we plan to reanalyze the data using all four different
proposed exclusion criteria, in increasing order of strictness:

1. All studies are included.

2. Only studies with data collected from ≥ 60 participants are included. This is
the preregistered exclusion criterion.

3. Only studies with ≥ 40 participants per cell are included (i.e. 80 participants
in total).

4. Only studies with ≥ 40 participants per cell and only expert-advised studies
are included. This is the exclusion criterion used by Chatard et al. (2020).

Note that these are the study-level exclusion criteria. From the included studies
we will analyze all participants that responded to all prompts.

We will conduct a model-averaged meta-analysis using JASP and the metaBMA
package in R. This analysis will be modeled after Gronau et al. (2017). Specifically,
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we will use an informed prior distribution on heterogeneity across experiments (van
Erp et al., 2017), and three different one-sided priors on group-level effect size: a
default Cauchy with scale 0.707, the Oosterwijk prior (Gronau, Ly, & Wagenmakers,
2019), and the Vohs prior (i.e., a normal distribution with mean 0.30 and standard
deviation 0.15, as specified for a recent many-labs study on the ego-depletion effect).

Given that participant-level data are available we will also conduct a Bayesian
multilevel analysis modeled after Rouder et al. (2019) where participants are nested
in lab sites. We use a similar model to the one used for the embodied cognition
reanalysis conducted by Rouder et al. (2019). There are two critical prior settings to
consider, the scale settings on µθ and σ2

θ . The scale on µθ corresponds to the expected
size of the overall effect. As Rouder et al. (2019) we set this scale to 0.4. The scale
of σ2

θ corresponds to the expected amount of variability in effect size across studies.
Again, we kept the value of 0.24 as proposed by Rouder et al. (2019).

Both analyses will be conducted using all four data exclusion rules. The in-
terpretation of the results will center, firstly, on the Bayes factor for the presence or
absence of an effect, and, secondly, on the size of the effect.

Appendix D: Full table of data exclusion constellations

Table 5
Exclusion constellations and resulting sample sizes

Participant-level N-based Protocol Timing-based Apply P-based Sample Size Labs

All All All All AA only 2225 21
White & US-born All All All AA only 1880 21
US-Identity > 7 All All All AA only 1699 21
All N > 60 All All AA only 2067 17
White & US-born N > 60 All All AA only 1746 17
US-Identity > 7 N > 60 All All AA only 1593 17
All N > 80 All All AA only 1866 14
White & US-born N > 80 All All AA only 1545 14
US-Identity > 7 N > 80 All All AA only 1392 14
All All AA All AA only 798 9
White & US-born All AA All AA only 453 9
US-Identity > 7 All AA All AA only 272 9
All N > 60 AA All AA only 699 7
White & US-born N > 60 AA All AA only 378 7

Continued on next page
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Table 5 continued
Participant-level N-based Protocol Timing-based Apply P-based Sample Size Labs

US-Identity > 7 N > 60 AA All AA only 225 7
All N > 80 AA All AA only 699 7
White & US-born N > 80 AA All AA only 378 7
US-Identity > 7 N > 80 AA All AA only 225 7
All All All After prereg AA only 1659 20
White & US-born All All After prereg AA only 1314 20
US-Identity > 7 All All After prereg AA only 1133 20
All N > 60 All After prereg AA only 1544 17
White & US-born N > 60 All After prereg AA only 1223 17
US-Identity > 7 N > 60 All After prereg AA only 1070 17
All N > 80 All After prereg AA only 1343 14
White & US-born N > 80 All After prereg AA only 1022 14
US-Identity > 7 N > 80 All After prereg AA only 869 14
All All AA After prereg AA only 797 9
White & US-born All AA After prereg AA only 452 9
US-Identity > 7 All AA After prereg AA only 271 9
All N > 60 AA After prereg AA only 698 7
White & US-born N > 60 AA After prereg AA only 377 7
US-Identity > 7 N > 60 AA After prereg AA only 224 7
All N > 80 AA After prereg AA only 698 7
White & US-born N > 80 AA After prereg AA only 377 7
US-Identity > 7 N > 80 AA After prereg AA only 224 7
All All All All AA and IH 2211 21
White & US-born All All All AA and IH 983 16
US-Identity > 7 All All All AA and IH 272 9
All N > 60 All All AA and IH 2053 17
White & US-born N > 60 All All AA and IH 897 13
US-Identity > 7 N > 60 All All AA and IH 225 7
All N > 80 All All AA and IH 1852 14
White & US-born N > 80 All All AA and IH 864 12
US-Identity > 7 N > 80 All All AA and IH 225 7
All All AA All AA and IH 799 9
White & US-born All AA All AA and IH 453 9
US-Identity > 7 All AA All AA and IH 272 9
All N > 60 AA All AA and IH 700 7
White & US-born N > 60 AA All AA and IH 378 7
US-Identity > 7 N > 60 AA All AA and IH 225 7

Continued on next page
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Table 5 continued
Participant-level N-based Protocol Timing-based Apply P-based Sample Size Labs

All N > 80 AA All AA and IH 700 7
White & US-born N > 80 AA All AA and IH 378 7
US-Identity > 7 N > 80 AA All AA and IH 225 7
All All All After prereg AA and IH 1650 20
White & US-born All All After prereg AA and IH 777 15
US-Identity > 7 All All After prereg AA and IH 271 9
All N > 60 All After prereg AA and IH 1535 17
White & US-born N > 60 All After prereg AA and IH 702 13
US-Identity > 7 N > 60 All After prereg AA and IH 224 7
All N > 80 All After prereg AA and IH 1334 14
White & US-born N > 80 All After prereg AA and IH 669 12
US-Identity > 7 N > 80 All After prereg AA and IH 224 7
All All AA After prereg AA and IH 798 9
White & US-born All AA After prereg AA and IH 452 9
US-Identity > 7 All AA After prereg AA and IH 271 9
All N > 60 AA After prereg AA and IH 699 7
White & US-born N > 60 AA After prereg AA and IH 377 7
US-Identity > 7 N > 60 AA After prereg AA and IH 224 7
All N > 80 AA After prereg AA and IH 699 7
White & US-born N > 80 AA After prereg AA and IH 377 7
US-Identity > 7 N > 80 AA After prereg AA and IH 224 7

Note. Orange rows refer to Klein et al.’s key analyses; green rows refer to Chatard
et al.’s key analyses; purple rows refer to our chosen analyses; grey rows are repeated
data sets and not included in the multiverse analysis; AA = author-advised. ’Ap-
plication P-based’ indicates whether the participant-level exclusion criteria are ap-
plied to the author-advised labs only (retaining all in-house participants) or to both
author-advised and in-house labs (missing data excluded).
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